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1. Introduction

Principal chiral models (PCMs) on symmetric spaces have been studied extensively be-

cause of their numerous applications in many different branches of physics. While PCMs

on symmetric spaces are well-known to possess an infinite number of classically conserved

quantities (see [1 – 6] for early work and e.g. [7, 8] for more recent developments and ref-

erences), quantum effects spoil integrability in many cases [9, 10]. And even in those

examples for which this does not happen, finding explicit formulas for partition functions

and correlators is a difficult problem that has only been solved for a small set of models.
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More recently, PCMs on (generalized) symmetric superspaces have received considerable

attention. This is explained in part through the role they play for the description of

strings for Anti-de Sitter (AdS) backgrounds in various dimensions, including AdS5 × S5

and AdS4×CP
3 [11 – 15]. PCMs on symmetric superspaces possess a number of remarkable

properties. In particular, there exist several families of quantum conformal models [16 – 20].

Yet, finding explicit solutions is still rather difficult and will certainly require developing

new techniques, see e.g. [21, 22]. Some remarkable recent advances, most importantly the

results of [23] and [24, 25], seem to bring at least some partial solutions within reach. One

of our aims here is to initiate and explore new solution strategies that incorporate target

space supersymmetry as an essential feature.

In this work we focus on a particular family of symmetric target superspaces, namely on

the odd dimensional superspheres S2S+1|2S with 2S fermionic coordinates. The supersphere

S2S+1|2S admits at least three different descriptions that will be somewhat useful for us

below. We can think of S2S+1|2S as a supermanifold in R
2S+2|2S defined by the equation

2S+2∑

i=1

x2
i + 2R2

S∑

a=1

η2a−1η2a = R2 . (1.1)

Here, xi, i = 1, . . . , 2S+ 2, and ηj, j = 1, . . . , 2S, are the bosonic and fermionic coordinates

of R
2S+2|2S, respectively. The real parameter R has been introduced to denote the radius of

the supersphere. Note that in our conventions, the bosonic coordinates scale with the length

while the fermionic coordinates are chosen to be dimensionless. From our description of

the supersphere through equation (1.1) it is evident that S2S+1|2S comes equipped with an

osp(2S +2|2S) action. In fact, the Lie superalgebra osp(2S+2|2S) acts on the embedding

space R
2S+2|2S through its fundamental representation. By the very definition of OSP(2S+

2|2S) this action respects the constraint (1.1). Hence, we arrive at a second description of

S2S+1|2S as a symmetric space

S2S+1|2S = OSP(2S + 2|2S)/OSP(2S + 1|2S) . (1.2)

Note that the stabilizer of any point on the supersphere is isomorphic to the subsupergroup

OSP(2S+1|2S) ⊂ OSP(2S+2|2S). Finally, we can also solve the constraint (1.1) explicitly

by parametrizing the supersphere S2S+1|2S through 2S + 1 angular coordinates ϕj and 2S

fermionic variables ηj . In the case of the 3-sphere S3|2, for example, the line element takes

the following form

ds2 = 2R2(1 − η1η2)dη1dη2 +R2(1 − 2η1η2)dΩ3 (1.3)

where

dΩ3 = dϕ2
1 + cos2 ϕ1 dϕ

2
2 + sin2 ϕ1 dϕ

2
3

is the usual line element of the 3-dimensional unit sphere. All three descriptions of the

supersphere S2S+1|2S will be used frequently throughout the rest of this work.

Next we turn to the principal chiral model on the supersphere. Once more, there

are different ways to introduce this theory. The most basic one is to think of it as a

– 2 –
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linear sigma model for the fields xi and ηj with a non-linear constraint (1.1) on the field

configurations. Another possibility is to consider it as a non-linear sigma model. In the

case of the 3-dimensional supersphere the latter takes the form

SPCM =
R2

2π

∫
d2z

(
2(1 − η1η2)

(
∂η1∂̄η2 − ∂η2∂̄η1

)

+ (1−2η1η2)
(
∂ϕ1∂̄ϕ1+cos2 ϕ1 ∂ϕ2∂̄ϕ2+sin2 ϕ1 ∂ϕ3∂̄ϕ3

)) (1.4)

for the fields ηj , ϕi. The coupling constant in front of the action is determined by the

radius R of S3|2. For the PCM on the purely bosonic 3-sphere the coupling R runs and in

order for the flow to end in a non-trivial fixed-point one must add a WZ term [26]. But the

presence of the two fermionic directions changes the situation drastically. As shown in [19],

the β-function of the PCM on S2S+1|2S is the same as for a bosonic PCM on a sphere Sd

whose dimension d = 2S + 1 − 2S = 1 is given by the difference between the number of

bosonic and fermionic coordinates. Consequently, the β-function vanishes for the PCM on

S2S+1|2S , i.e. the model (1.4) defines a family of conformal field theories at central charge

c = 1 with continuously varying exponents.

Of course, unlike the PCM on S1 = U(1), the theory defined by the action (1.4) is not

free. For large radius R, the model is weakly coupled and its properties may by studied

perturbatively. But as we pass to a more strongly curved background, computing quantities

as a function of the radius R may seem like a very daunting task. This is even more so

because there is very little symmetry to work with. As a conformal field theory, the PCM

on the supersphere possesses the usual chiral Virasoro symmetries. But for a model with

multiple bosonic coordinates the two sets of chiral Virasoro generators are not sufficient to

make the theory rational. In addition, there is a single set of global osp(4|2) generators.

Their Noether currents, however, fail to be chiral, at least for generic points in the moduli

space. Without the protection of current algebra symmetries, the usual algebraic tools of

conformal field theory cannot be applied to supersphere PCMs and so we have to proceed

along a rather different route.

Many years of experience with sigma models show that they often possess interesting

dual descriptions. The simplest such duality is that between the free compactified boson

and the massless Thirring model. Let us recall that the latter involves two real fermions

ψ1 and ψ2 and the following action

STh
m=0 =

1

2π

∫
d2z

[
2∑

i=1

(
ψi∂̄ψi + ψ̄i∂ψ̄i

)
+ g2

(
ψ1ψ̄2 − ψ2ψ̄1

)2
]

where the compactification radius R is related to the coupling g through R2 = 1 + g2.

Similarly, one may hope to uncover a dual description of the PCM on the supersphere

S2S+1|2S that becomes weakly coupled for some finite value of the radius R, deep in the

strongly curved regime. Such a dual description was indeed proposed recently. According

to an intriguing conjecture by Candu and Saleur [25], there indeed exists one special radius

R = R0 at which the PCM on S2S+1|2S can be described as a non-interacting Gross-Neveu

– 3 –
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model involving 2S + 2 real fermions ψi along with S bosonic βγ systems γa and βa,

SGN
g=0 =

1

2π

∫
d2z

[∑
i

(
ψi∂̄ψi + ψ̄i∂ψ̄i

)
+
∑

a

(
βa∂̄γa + β̄a∂γ̄a

)]
. (1.5)

All the fields appearing in this theory possess conformal weight hi = ha = 1/2 so that the

central charge is c = S+1−S = 1. At this point in the moduli space, the theory possesses

two commuting sets of chiral osp(4|2) currents Jµ = Jµ(z) and J̄µ = J̄µ(z̄). Explicit

formulas will be spelled out in section 3 below. The affine symmetry is broken down to a

global osp(4|2) symmetry by the following osp(4|2) invariant marginal deformation

S int =
g2

2π

∫
d2zJµ(z)Ω(J̄µ(z̄)) =

g2

2π

∫
d2z

[∑
i
̟iψiψ̄i +

∑
a
(γaβ̄a − βaγ̄a)

]2
. (1.6)

Here, Ω is a particular automorphism of the osp(2S+2|2S) current algebra which leaves a

subalgebra osp(2S+1|2S) invariant. It will be spelled out explicitly below. The numbers

̟i are given by ̟1 = −1 and ̟i = 1 for i 6= 1. The theory SGN = SGN
g=0 +S int is claimed to

be equivalent to the supersphere PCM with the two coupling constants R and g related by

R2 = 1+g2.1 The equivalence is a strong-weak coupling duality since SGN becomes weakly

coupled for R ∼ R0 = 1. Note that this duality is a direct generalization of the relation

between the compactified free field and the massless Thirring model. There appears one

real fermion for each bosonic coordinate of the embedding space R
2S+2|2S . Each pair of

additional fermionic directions gives rise to a βγ system. Note, however, that the duality

between supersphere PCMs and Gross-Neveu models is one between interacting conformal

field theories. In that sense, it is much less trivial than its purely bosonic counterpart.

The main aim of this note is to provide very compelling evidence for the duality be-

tween the theory (1.5), (1.6) and the supersphere PCMs, extending previous numerical

and algebraic arguments given in [24, 25]. To this end we shall employ some recent re-

sults of [23] that are designed to compute exact spectra in models with a special class of

target space supersymmetries, including the two series psl(N|N) and osp(2S + 2|2S). The

Lie superalgebra osp(2S + 2|2S) possesses a vanishing quadratic Casimir Cad ∼ fµνρf
µνρ

in the adjoint representation. Since Cad may be considered as a rough measure for the

‘amount of non-abelianess’ of a Lie superalgebra, one may suspect that field theories with

osp(2S + 2|2S) symmetry are somewhat intermediate between free field theories and the

most general interacting models. Indeed, as was shown in [17, 23], the perturbation series

for conformal weights has features that are very reminiscent of those in abelian models

(torus compactifications). In this note we shall construct the exact partition function of

the theory (1.5), (1.6) with a particular choice of boundary conditions, but for all values(!)

of the coupling g. We shall prove that it interpolates correctly between g = 0 and the

spectrum of the supersphere PCM at R = ∞.

The main results of [23] are rather easy to state. Before we do so, let us briefly review

the behavior of conformal weights for a compactified free bosonic field ϕ ∼ ϕ + 2πR.

1Let us note that the signs ̟i in the iteraction term are directly linked to the automorphism Ω. These

signs were missing in the original formulation of the conjecture by Candu and Saleur [25]. They are irrelevant

for S = 0 but play a certain role when S ≥ 1.
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Suppose we are given a field Ψ of conformal weight h0(Ψ) at some radius R0. In order to

find the conformal weight of the same field Ψ at a different radius R, it suffices to know its

U(1) charge g(Ψ) (momentum/winding). The conformal weight is then given by

h(Ψ) = h0(Ψ) + f(R) g2(Ψ) (1.7)

where f(R) is some universal function of the radius that is the same for all fields Ψ.

f(R) may depend, however, on whether Ψ is a bulk or boundary field and on the precise

boundary condition that is imposed. For bulk fields, there exist independent left and right

U(1) charges and the behavior of the weights is a bit more complicated. We shall briefly

comment on this issue in the conclusions. Returning to our supersphere conformal field

theories, we pick any field Ψ of weight h0(Ψ) in the free field theory (1.5). Let us suppose

that Ψ is part of some osp(2S + 2|2S) multiplet Λ. According to the arguments explained

in [23] (see also [24] for numerical checks), its dimension at radius R is then given by

h(Ψ) = h0(Ψ) + f(R) C2(Λ) . (1.8)

Here, C2(Λ) is the value of the quadratic Casimir element in the representation Λ of the

Lie superalgebra osp(2S+2|2S). Once again, the function f(R) is universal, i.e. it does not

depend on the field Ψ. Hence, the shift of the conformal weight is entirely determined by the

way Ψ transforms under the action of the Lie superalgebra osp(2S+ 2|2S). Equation (1.8)

is the direct generalization of eq. (1.7) with the square of the U(1) charge replaced by the

quadratic Casimir. The behavior (1.8) has been also been predicted through the study

of lattice algebras in [25]. It was furthermore checked using perturbative calculations at

R = ∞ and with numerical simulations. We shall refer to the behavior (1.8) as a quasi-

abelian deformation of conformal weights. It is typical for models with osp(2S + 2|2S) or

psl(N|N) symmetry, though often restricted to particular (boundary) fields of the theories

(see [23] and final section for more details). Let us mention that fields transforming in

representations with vanishing Casimir C2(Λ) are protected, i.e. their conformal weights

are independent of R. Multiplets of this type always satisfy some shortening conditions.

Our formula (1.8), however, applies to all fields in the theory, irrespectively of whether

they are long or short. It allows to compute their conformal weight for all values of the

radius R.

Let us study a few concrete examples of the quasi-abelian deformation of confor-

mal weights. In the large volume limit, the PCM possesses an infinite number of fields

with conformal weight h = 0. These simply correspond to functions on the supersphere.

The simplest function is the constant. Since it transforms in the trivial representation of

osp(2S + 2|2S), its conformal weight remains undeformed at h = 0. It corresponds to the

unique vacuum state of the free Gross-Neveu model (1.5). Next, the PCM contains the fun-

damental multiplet xi, ηj . The quadratic Casimir of this multiplet Λ = Λf is C2(Λf ) = 1,

i.e. its value is independent of S. As we move from the free sigma model at R = ∞ towards

the free Gross-Neveu model (1.5), the fields xi, ηj acquire a non-vanishing anomalous di-

mension which becomes h = h0 + f(R0)C2(Λf ) = 1/2 when we reach the radius R = 1

corresponding to g = 0. Hence, the fundamental multiplet of the PCM turns into the

– 5 –
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multiplet ψi, γa, βa. Higher functions possess larger Casimir and hence they are mapped

to states of weight h > 1/2 at g = 0. Beyond the space of ground states in the PCM, there

are fields involving any number of world-sheet derivatives. These have positive integer

weight at R = ∞. As we shall see below, such states can transform in osp(2S + 2|2S)

representations Λ with both positive and negative values C2(Λ) of the quadratic Casimir.

Consequently, some of these multiplets are moved up while others are moved down to lower

weights. Our claim is that weights are rearranged in precisely the right way to reproduce

the spectrum of the g = 0 Gross-Neveu model.

The plan of this work is as follows. In the next section we shall study the PCM (1.4)

for the 3-dimensional supersphere S3|2 and determine its exact spectrum at R = ∞. For

simplicity, we shall also restrict to the partition function on a strip with Neumann boundary

conditions imposed along both boundaries. After a detailed discussion of the low lying

states, we present a closed formula for the full partition function (2.17). The latter is then

decomposed explicitly into the contributions coming from states which transform in the

same representation Λ under the global osp(4|2). Section 3 is devoted to the theory (1.5)

and its deformation by the term (1.6). In particular, we study the bulk and boundary

spectrum of the free field theory. One of the resulting boundary partition functions is then

expanded explicitly in terms of osp(4|2) characters. This allows us to compare with the

spectrum of the PCM at radii R < ∞, using some of the tools developed in [23]. We

shall find that the results agree exactly with the partition function found in section 2! In

the fourth section, we comment on the generalization to higher dimensional superspheres.

Finally, the conclusions contain a few general thoughts on possible implications for string

theory in Anti-deSitter spaces. We shall also briefly discuss the computation of bulk spectra

for odd dimensional superspheres.

2. Spectrum of the supersphere PCM at large volume

In this section we shall focus on the PCM for the supersphere S3|2 with large radius R. At

the point R = ∞ we can compute partition functions for periodic boundary conditions and

on a strip. The two main ingredients are the exact minisuperspace spectrum on S3|2 (see

subsection 2.1) and a good control of the combinatorics that determine the field theoretic

spectrum at R = ∞. The latter will be explained in subsection 2.2. The spectrum is

finally decomposed into finite dimensional representations of the global symmetry algebra

osp(4|2) in the third subsection.

2.1 Particle on the supersphere S3|2

The Laplacian on the supersphere S3|2 was analyzed in full detail by Candu and Saleur [25].

We shall state their results first and then provide a new derivation that is particularly well

suited for the discussion in the following subsections.

As a warm-up, let us briefly recall the spectrum of the Laplacian on a 3-sphere S3. The

space of functions on S3 carries an action of so(4)∼=sl(2)⊕sl(2). Therefore, eigenfunctions of

the Laplacian on S3 are organized in finite dimensional multiplets of sl(2)⊕sl(2). According

to the Peter-Weyl theory for SU(2) ∼= S3, there is one such multiplet ϕm for each integer

– 6 –
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m = 0, 1, 2, . . . . It has dimension dm = (m + 1)2 and transforms in the representation

(m
2 ,

m
2 ). The eigenvalue of the Laplacian on the multiplet ϕm is given by ∆m = m(m+ 2).

For the supersphere S3|2 we expect very similar results except that the multiplicities should

roughly exceed those of the bosonic model by a factor of 4.

Before we extend these thoughts to the supersphere, however, let us mention a few facts

on the Lie superalgebra osp(4|2). Its bosonic subalgebra is 9-dimensional and it consists

of three commuting copies of sl(2). This implies that irreducible representations [j1, j2, j3]

of osp(4|2) are labeled by three spins ji. In these representations the quadratic Casimir

element takes the value

C
(
[j1, j2, j3]

)
= −4j1(j1 − 1) + 2j2(j2 + 1) + 2j3(j3 + 1) . (2.1)

A generic (typical)2 representation possesses dimension

D
(
[j1, j2, j3]

)
= 16(2j1 + 1)(2j2 + 1)(2j3 + 1) . (2.2)

The representations of osp(4|2) that appear in the spectrum of the Laplacian on the super-

sphere S3|2 are not generic. On the supersphere, wave functions are organized in osp(4|2)
multiplets φm,m = 0, 1, 2, . . . . The first multiplet φ0 consists of a single function, namely

the constant φ0 = 1. It transforms in the trivial 1-dimensional representation [0, 0, 0].

For positive values of m, the multiplet φm transforms in the irreducible representation

[12 ,
m−1

2 , m−1
2 ] of osp(4|2). Consequently, the space H0 of square integrable functions on

the supersphere S3|2 decomposes as follows,

H0
∼= [0, 0, 0] ⊕

∞⊕

m=1

[
1

2
,
m− 1

2
,
m− 1

2

]
=

∞⊕

m=0

λm,0 . (2.3)

Here we have also introduced the symbol λm,0 such that λ0,0 is the trivial representation

and λm+1,0 = [12 ,
m
2 ,

m
2 ]. According to eq. (2.1), the Laplacian takes the values ∆m = m2.

The quadratic dependence on m is similar to the bosonic sphere. On the other hand, the

degeneracies are much larger for the supersphere. In fact, upon restriction to the bosonic

subalgebra, the eigenspaces of the Laplacian decompose according to

[
1

2
,
k

2
,
k

2

]∣∣∣∣
sl(2)⊕sl(2)⊕sl(2)

∼=
(

1

2
,
k

2
,
k

2

)
⊕
(

0,
k + 1

2
,
k + 1

2

)
⊕
(

0,
k − 1

2
,
k − 1

2

)

for k = m− 1 ≥ 1. When k = 0, the last term must be omitted. The formula implies that

the dimension Dk of the representation λk,0 is given by Dk = 4k2 + 2 for k ≥ 1. This is

roughly four times as large as the dimension of the eigenspaces on the bosonic sphere S3,

as one would expect.

It is quite instructive to prove the decomposition (2.3). To this end, let us collect

the bosonic coordinate functions xi =: Xi, i = 1, . . . , 4 and the fermionic generators ηi =

X4+i into a single multiplet X. We recall that the six functions Xi are subject to the

constraint (1.1). The latter may be recast into the more covariant form XaXbJ
ab = R2

2See appendix A.
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by introducing an appropriate matrix J = (Jab). The multiplet X transforms in the

fundamental representation λ1,0 =
[

1
2 , 0, 0

]
of osp(4|2). When we restrict from osp(4|2) to

its bosonic subalgebra, X splits into a 4-dimensional multiplet in the (1
2 ,

1
2) representation

of so(4) ∼= sl(2)⊕sl(2) and a 2-dimensional multiplet in the (1
2 ) representation of sp(2)

∼= sl(2). While the former is spanned by the bosonic coordinate functions xi, the latter

consists of the odd elements ηi. The algebra H0 of functions on S3|2 is generated by the six

coordinates Xi, i.e. every square integrable function can be arbitrarily well approximated

by a polynomial in Xi. The space of polynomials comes with an integer grading given by

the degree of homogeneity. Since the homogeneous polynomials transform in the graded

symmetric tensor product of the fundamental representation λ1,0, one might be inclined

to identify the direct sum Sλ1,0 =
⊕
λ⊗s

1,0 of all graded symmetric tensor powers of the

fundamental representation with the space H0. Such an identification, however, would

disregard the defining equation (1.1) of the supersphere. The constraint (1.1) generates

an ideal in the symmetric tensor algebra Sλ1,0 that has to be divided out in order to

avoid overcounting of states. The two-fold symmetric tensor power of the fundamental

representation, for example, is given by λ⊗s2
1,0 = [0, 0, 0]⊕λ2,0. The constraint (1.1) identifies

the multiplet [0, 0, 0] with the constant function. The latter has been counted already by the

very first term λ⊗s0
1,0 = [0, 0, 0]. Consequently, when considering the space of homogeneous

polynomials in Xi up to degree m, we have to quotient out the subspace of polynomials that

contain the factor XaXbJ
ab, which is isomorphic to the space of homogeneous polynomials

of degree less or equal to m− 2. Thereby we are led to the following expression for H0,

H0 = lim
N→∞

(
N⊕

m=0

λ⊗sm
1,0

)/(N−2⊕

m=0

λ⊗sm
1,0

)
=

∞⊕

m=0

λm,0 = [0, 0, 0] ⊕
∞⊕

k=0

[
1

2
,
k

2
,
k

2

]
(2.4)

where we have used the tensor product decomposition3 λ⊗sm
1,0

∼=
⊕[m/2]

i=0 λm−2i,0 and the

identity λk+1,0 = [12 ,
k
2 ,

k
2 ] for k ≥ 0.

Before we conclude this subsection, let us briefly construct the partition function for

a particle on the supersphere. By this we mean the quantity

Z0 = Z0(z1, z2, z3) = trH0(z
H1

1 zH2

2 zH3

3 )

where H i are the three Cartan generators and the trace is taken evaluated in the space

H0 of square integrable functions on the supersphere S3|2. The results we sketched in the

previous paragraphs imply that

Z0 = 1 +

∞∑

m=0

χ[ 1
2
, m

2
, m

2
](z1, z2, z3) (2.5)

where χ[ 1
2
, m

2
, m

2
](z1, z2, z3) = χ( 1

2
, m
2

, m
2

) + χ(0, m+1
2

, m+1
2

) + χ(0, m−1
2

, m−1
2

) . (2.6)

In the second line the last term should be omitted for m = 0 and the character χ(j1,j2,j3) =∏
i χji

(zi) denotes a product of bosonic sl(2) characters. The partition function Z0 can be

written in a different form that mimics our proof of the formula (2.3). To this end, let us

3By [x] we mean the floor function of x.
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consider the module Sλ1,0. We think of it as being generated by four bosonic coordinates

in the (1
2 ,

1
2 ) representation of sl(2)⊕sl(2) ∼= so(4) along with the two fermionic ones in the

(1
2 ) representation of sl(2) ∼= sp(2). On Sλ1,0 we introduce the number operator N that

counts the number of bosonic and fermionic coordinate functions in a given monomial.

Since there are no non-trivial relations in Sλ1,0 we can easily compute

ZS(t) = trSλ1,0(t
NzH1

1 zH2

2 zH3

3 )

=
(1 + z

1
2
1 t)(1 + z

− 1
2

1 t)

(1 − z
1
2
2 z

1
2
3 t)(1 − z

1
2
2 z

− 1
2

3 t)(1 − z
− 1

2
2 z

1
2
3 t)(1 − z

− 1
2

2 z
− 1

2
3 t)

. (2.7)

Multiplying this quantity with (1 − t2) implements the constraint (1.1) on the level of

generating functions. We can then remove t by sending it to t → 1. The result is a rather

elegant new formula for the partition function Z0,

Z0(z1, z2, z3) = lim
t→1

[
(1 − t2)ZS(t; z1, z2, z3)

]
. (2.8)

If the quotient is expanded in a Taylor series and expressions are reorganized into characters

of osp(4|2) we recover our previous result (2.5).

2.2 The complete boundary spectrum

Now let us turn to the spectrum of the PCM (1.4) at the special point R = ∞ where

our field theory becomes free. At this point, the fields are easy to list and their weights

agree with their classical values. For simplicity, we shall study the boundary spectrum of

a volume filling brane, i.e. with Neumann boundary conditions imposed on all fields of the

model. In this case it suffices to consider the derivative ∂u along the boundary, rather than

two world-sheet derivatives ∂ and ∂̄. From now on, the letters xi = xi(u), ηa = ηa(u) and

Xi = Xi(u) shall denote boundary fields rather than coordinate functions.

So, let us begin to analyze the space H of boundary fields. Obviously, H is spanned

by monomials Φ of the form

Φ =
∏

i0

Xi0

∏

i1

∂Xi1

∏

i2

∂2Xi2 · · · . (2.9)

The number of factors involving no, one, two etc. derivatives ∂ = ∂u of the fundamental

fields is arbitrary. Let us stress at this point already that the defining relation (1.1) of

the supersphere imposes many relations between monomials of the form (2.9). The space

H, comes equipped with an integer grading, i.e. H =
⊕∞

n=0 Hn, where Hn is spanned

by monomials Φ with a total number n of derivatives. The expression Xa∂Xb∂
4Xc, for

example, is an element of H5.

Associated with the integer grading of the state space H there is a corresponding

decomposition of the partition function

Z(q) = strH(qL0−
c
24 zH1

1 zH2

2 zH3

3 ) = q−
1
24

∞∑

n=0

Zn q
n . (2.10)
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The coefficients Zn = Zn(zi) are (infinite) linear combinations of osp(4|2) characters. A

formula for Z0 was discussed in the previous subsection. In the present context it encodes

all information on the osp(4|2) transformation law of fields with conformal weight h = 0.

These are in one-to-one correspondence with functions on the supersphere S3|2 (recall that

we are working at R = ∞).

Let us now turn to states involving a single derivative ∂. Since H1 is built from fields

of the form φn(Xi)∂Xi, where φn ∈ H0 and since the ∂Xi transform in λ1,0, one might

at first sight suspect that Z ′
1 = Z0χλ1,0 coincides with Z1. But this is not true since it

actually counts many fields twice. So far, we have not accounted for the derivative of the

supersphere relation (1.1). Taking the derivative of this constraint we find

∑

i,j

Xi∂XjJ
ij = 0 .

This additional condition tells us to subtract Z0 from Z ′
1. Hence we find that Z1 =

Z0(χλ1,0−χλ0,0) and a simple computer program can decompose this product into characters

of osp(4|2), leading to

Z1 =
∞∑

k=0

(
χ[1, k

2
, k
2
] + χ[ 1

2
, k
2
, k
2
]

)
. (2.11)

In order to gain some more familiarity with the state counting we invite the reader to

construct the contribution Z2 of fields with two derivatives to the total partition function.

The answer is given by

Z2 = χ[0,0,0] + 2

∞∑

k=0

χ[ 1
2
, k
2
, k
2
] + χ[1,0,0]

+

∞∑

k=1

(
χ[1, k+1

2
, k−1

2
] + χ[1, k−1

2
, k+1

2
] + 2χ[ 1

2
, k
2
, k
2
] + 2χ[1, k

2
, k
2
]

)
. (2.12)

Instead of explaining this formula we shall turn to the higher subtraces Zi right away.

To begin with, let us enumerate expressions in which no field appears without derivative

and where the total degree of the derivatives adds up to n. There are p(n) of these

terms, where p(n) is the number of partitions of the integer n. We shall denote the set of

partitions by P (n) and think of their elements as sequences µ = (µi, i = 1, 2, 3, . . . ) such

that
∑
iµi = n. With n = 3, for example, we have to consider terms involving ∂3Xi,

∂2Xi∂Xj and ∂Xi∂Xj∂Xk corresponding to the sequences (µ1, µ2, µ3) = (0, 0, 1), (1, 1, 0)

and (3, 0, 0), respectively. In our notations we shall suppress the infinite number of zero

entries to the right of the last non-zero one. To each partition µ ∈ P (n), we associate the

trace χλ⊗µ
1,0

over the space λ⊗sµ1
1,0 ⊗ λ⊗sµ2

1,0 · · · ,

χ
λ⊗µ
1,0

(z1, z2, z3) =
∞∏

i=1

χ
λ
⊗sµi
1,0

. (2.13)

The factors on the right hand side involve traces over the µth
i symmetric tensor product of

the fundamental representation λ1,0. Such factors arise from the product of µi derivatives
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of order i of the fundamental field multiplet. Let us now set Z ′
n = Z0

∑
µ∈P (n) χλ⊗µ

1,0
to

be Z0 multiplied with the sum of the p(n) traces (2.13). Clearly, Z ′
n is not the same as

Zn. In fact, we still have to correct for some overcounting, since we have to subtract

all possible derivatives of degree up to n of the supersphere relations (1.1). Each one of

the p(n) partitions µ ∈ P (n) has to be investigated on its own in order to understand

which relations apply to it. Suppose that for a given partition µ, the entry µj does not

vanish. This means that the corresponding fields contain a factor ∂jXa. Hence, there

exist relations between such fields that arise from the jth derivative of the supersphere

relation (1.1). These must be removed. We may formalize this prescription by introducing

the special partitions ǫi which have a single entry ǫii = 1 in the ith position and are zero

otherwise. The sequence ǫi is an element of P (i). Let us also denote by µ− ǫi the partition

from P (n−i) that is obtained by subtracting the entries. If the resulting sequence contains

a negative entry, i.e. if µi = 0, then we set χ
λ
⊗(µ−ǫi)
1,0

= 0. With these notations, we can now

formalize our resolution for the issue of overcounting. Taking into account the constraints

imposed by the ith derivative of (1.1) amounts to subtracting from Z ′
n all functions of

the form Z0χ
λ
⊗(µ−ǫi)
1,0

. Here, µ ∈ P (n) and i runs through all integers i = 1, 2, . . . such

that µi 6= 0. After removing all these terms from Z ′
n we realize that we actually overdid

things with our correction. In fact we have deleted those expressions for which two ore

more relations are simultaneously fulfilled, so that we need to put them back in. Thus,

we must add all the terms Z0χ
λ
⊗(µ−ǫi−ǫj )
1,0

with i < j. The resulting expression overcounts

those polynomials that obey three different relations, etc. A simple induction leads to the

following expression for Zn

Zn = Z0

∑

µ∈P (n)

(
χ[ 1

2
,0,0]⊗µ −

n∑

i=1

χ
[ 1
2
,0,0]⊗(µ−ǫi) +

n∑

i<j=1

χ
[ 1
2
,0,0]⊗(µ−ǫi−ǫj ) − · · ·

)
. (2.14)

All notations that are used in this expression have been introduced in the preceding para-

graph. We have placed the subscript λ1,0 = [12 , 0, 0] back on the symbol χ to emphasize

the relation to the fundamental multiplet. The reader is invited to check that our general

formula for Zn reproduces the previous expressions (2.5), (2.11), (2.12) for Zn when n ≤ 2.

Having found a formula for Zn, we can insert it into our general prescription (2.10).

The result is,

Z = q−
1
24 Z0

∞∑

n=0

qn
∑

µ∈P (n)

(
χ[ 1

2
,0,0]⊗µ −

n∑

i=1

χ
[ 1
2
,0,0]⊗(µ−ǫi) +

n∑

i<j=1

χ
[ 1
2
,0,0]⊗(µ−ǫi−ǫj ) − · · ·

)
.

Now, since µ − ǫj is a partition in P (n − j), we are led to the idea of combining in the

above alternating sum all those terms that belong to partitions of the same size. Denoting

by pd(x; y) the function that counts the number of distinct, i.e. whose elements are all

different, partitions of x with exactly y elements, we leave to the reader the combinatorial
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homework to deduce

Z = q−
1
24 Z0

∞∑

n=0

qn




n∑

j=0

(
j∑

k=0

(−1)kpd(j; k)

)

︸ ︷︷ ︸
=:cj

∑

µ∈P (n−j)

χ[ 1
2
,0,0]⊗µ




= q−
1
24Z0

∞∑

n,j=0

qncj
∑

µ∈P (n−j)

χ[ 1
2
,0,0]⊗µ

= q−
1
24Z0

( ∞∑

j=0

cjq
j

) ∞∑

n=0

qn
∑

µ∈P (n)

χ[ 1
2
,0,0]⊗µ

= q−
1
24 Z0 φ(q)

∞∑

n=0

qn
∑

µ∈P (n)

χ[ 1
2
,0,0]⊗µ . (2.15)

The numbers cj can easily be recognized as the coefficients in the Taylor expansion of the

Euler φ-function. In fact the generating function for distinct partitions of a number n into

precisely l distinct numbers is given by

∞∏

k=1

(1 + zqk) =
∞∑

n=0

n∑

l=0

pd(n; l) zl qn . (2.16)

For z = −1 the left hand side reduces to the Euler function φ(q) while the right hand side

gives the sum
∑∞

n=0 cnq
n. Note that during the resummation in the second line of eq. (2.15)

we could drop a number of terms since P (n) is empty for n < 0. The result (2.15) has a

rather surprising interpretation. It tells us that we may at first discard all the derivatives

of the supersphere relations for the computation of subtraces Zi. Derivatives of eq. (1.1)

may then simply be taken into account by multiplying the result with the Euler function

φ(q).

The conclusion of the previous discussion may now be employed to derive a much

simpler formula for the partition function which generalizes the expression (2.8) for Z0.

Without paying respect to the supersphere relations, it is straightforward to enumerate

derivative fields. Recall that the four fundamental bosonic fields carry charges (0,±1
2 ,±1

2 )

under the three Cartan generators (H1,H2,H3). Similarly, the two fundamental fermionic

fields are only charged under the first Cartan generator H1 such that their charges are

(±1
2 , 0, 0). Hence, the partition function can now be represented in the form

Z = q−
1
24Z0 φ(q)

∞∏

n=1

(
1 + z

1
2
1 q

n
)(

1 + z
− 1

2
1 qn

)

(
1 − z

1
2
2 z

1
2
3 q

n
)(

1 − z
1
2
2 z

− 1
2

3 qn
)(

1 − z
− 1

2
2 z

1
2
3 q

n
)(

1 − z
− 1

2
2 z

− 1
2

3 qn
) .

(2.17)

The infinite product enumerates all states in the unconstrained state space. According to

our previous discussion, the derivatives of the supersphere constraints can be implemented

through a simple multiplication with the Euler function φ(q). Our final formula for the

partition function of a volume filling brane in the PCM at R = ∞ is indeed very simple.
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2.3 Casimir decomposition of the boundary spectrum

The goal of this section is to expand the partition sum (2.10) of the volume filling brane in

terms of osp(4|2) characters. To be more concrete, we would like to derive explicit formulas

for the branching functions ψK
Λ (q) in the decomposition

Z(q, z1, z2, z3) =
∑

Λ
χK

Λ (z1, z2, z3) ψ
K
Λ (q) . (2.18)

Here, the functions χK
Λ (z1, z2, z3) are characters of the Kac modules4 KΛ of osp(4|2). The

latter form a basis in the space of all characters so that the expansion coefficients are

uniquely determined. Finding an explicit formula for the branching functions ψK
Λ (q) is the

main result of this section. The final expression will take the following form

ψK
[j1,j2,j3]

(q) =
q2j1(j1−1)−j2(j2+1)−j3(j3+1)

η(q)φ(q)3

∞∑

n,m=0

(−1)m+nq
m
2

(m+4j1+2n+1)+ n
2
+j1

×
(
q(j2−

n
2
)2 − q(j2+ n

2
+1)2

)(
q(j3−

n
2
)2 − q(j3+

n
2
+1)2

)
.

(2.19)

Let us add two remarks here. To begin with, the decomposition (2.18) of the supersphere

partition function has also been considered in the work of Candu and Saleur [24, 25]. In

their context, the branching functions ψK are related to representation spaces of the so-

called Brauer algebra. The connection has interesting implications, but it does not provide

explicit formulas for ψK . Our formula (2.19) has not appeared in the literature before.

In addition, we would want to stress that the decomposition of the partition function into

characters of Kac modules is a somewhat formal procedure that does not fully capture

the representation content of the spectrum, at least not for the atypical sector of the

theory. One may notice, for example, that some of the expansion coefficients C
(n)
Λ in

ψK
Λ (q) =

∑
C

(n)
Λ qn are negative. Only for typical labels Λ will the numbers C

(n)
Λ be

positive. For atypical representations Λ, on the other hand, the characters χK
Λ of the Kac

modules have to be decomposed into characters of irreducible atypical representations χΛ

as described in (C.11) in order to obtain branching functions with non-negative integral

multiplicities.

The proof of eq. (2.19) proceeds in several steps. To begin with, we shall decompose the

partition function into representations of the bosonic subalgebra of osp(4|2). Our second

step then is to recombine bosonic characters into the characters of full osp(4|2) multiplets.

Once this is achieved, the resulting expressions still require some resummation in order to

bring them into a more appealing form.

In our computation, we shall split the full partition function into three different parts

and decompose them separately before putting all this together. We shall start with the

fermionic contributions in the numerator of the partition function (2.17). Apart from the

factors that arise from derivative fields, there are also two terms in Z0 that account for

fermionic zero modes. We may simply set the parameter t to t = 1 in those two factors

4Again, see appendix A.
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and combine them with the q-dependent terms in the numerators of eq. (2.17) to obtain

ZF(q, z1) :=
∞∏

n=0

(1 + z
1
2
1 q

n) (1 + z
− 1

2
1 qn) = (1 + z

1
2
1 )

∞∏

n=0

(1 + z
1
2
1 q

n+1) (1 + z
− 1

2
1 qn)

= q−
1
8

(
z
− 1

4
1 + z

1
4
1

)
1

φ(q)
θ2(z

1
2
1 |q) =

1

φ(q)

∑

n∈Z

z
n
2
1

(
q

n(n+1)
2 + q

n(n−1)
2

)

=
1

φ(q)

∑

n=0, 1
2
,1,...

(
qn(2n+1) + qn(2n−1) − q(n+1)(2n+3) − q(n+1)(2n+1)

)
χn(z1) .

Along the way we have used a number of simple identities5 for θ-functions. As a result, all

the fermionic contributions to the partition function have been decomposed explicitly into

multiplets of the even part of osp(4|2). Note that the two fermions transform non-trivially

only under the first subalgebra sl(2) and hence there is no dependence on z2 and z3 this

time.

The second piece of the partition function (2.17) that we would like to split off concerns

the bosonic zero modes, i.e. the denominator of the minisuperspace partition function Z0.

Its decomposition into bosonic representations is straightforward

lim
t→1

1 − t2

(1 − z
1
2
2 z

1
2
3 t)(1 − z

1
2
2 z

− 1
2

3 t)(1 − z
− 1

2
2 z

1
2
3 t)(1 − z

− 1
2

2 z
− 1

2
3 t)

=
∑

n=0, 1
2
,1,...

χn(z2)χn(z3) .

(2.20)

Note that the sum of characters on the left hand side encodes the well-known spectrum

of a bosonic 3-sphere S3 ∼= SU(2). Therefore we can just state this equality without any

detailed calculation. The commuting left and right invariant vector fields are generated

by the second and third copy of sl(2) within the even part of osp(4|2). Hence, there is no

dependence on the parameter z1.

It remains to analyze the q-dependent factors in the denominator of the partition

function (2.17). Their contribution may be expanded as follows

∞∏

n=1

(
(1 − z

1
2
2 z

1
2
3 q

n)(1 − z
1
2
2 z

− 1
2

3 qn)(1 − z
− 1

2
2 z

1
2
3 q

n)(1 − z
− 1

2
2 z

− 1
2

3 qn)

)−1

=

(∑

n∈Z

z
n
2
2 z

n
2
3

φ(q)2

∞∑

m=0

(−1)m
(
q

m
2

(m+2n+1) − q
m
2

(m+2n−1)
))

×
(

z3 −→ z−1
3

)

=
∑

k,l∈Z

k+l∈2Z

z
k
2
2 z

l
2
3

φ(q)4

∞∑

n,m=1

(−1)n+mqk n+m
2

+l n−m
2

(
q

n(n+1)
2 − q

n(n−1)
2

)(
q

m(m+1)
2 − q

m(m−1)
2

)

=
1

φ(q)4

∑

k,l∈N

k+l∈2N

∞∑

n,m=1

(−1)n+m (1 − qn)(1 − qm)(1 − qn+m)(1 − qn−m)

q−(k(n+m)+l(n−m)+n(n−1)+m(m−1))/2
χ k

2
(z2)χ l

2
(z3) .

5See equation (B.1).
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In the first line of the above computation we have used the lemma (B.1). Since all the con-

tributions being captured by this computation are associated with bosonic fields, characters

with a non-trivial z1 dependence do not arise.

In order to obtain the decomposition of Z into characters of osp(4|2)0̄ ∼= sl(2)⊕ sl(2)⊕
sl(2), we need to put the results from the preceding three computations together into

one expression. The answer contains products of characters which depend on the same

variables z2 and z3. These products can be re-expanded with the help of the following

auxiliary formula

∞∑

p=0

χ p
2
(z2)χ p

2
(z3)

∑

k,l∈N

k+l∈2N

ak,lχ k
2
(z2)χ l

2
(z3)

=
∑

k,l∈N

k+l∈2N

χ k
2
(z2)χ l

2
(z3)




∞∑

p=0

min{k,p}∑

r=0

min{l,p}∑

s=0

a|k−p|+2r,|l−p|+2s




(2.21)

which holds for an arbitrary set of numbers ak,l. When applied to the case at hand, we

find

Z =
1

φ(q)3η(q)
ZF(q, z1)

∑

j2,j3∈
1
2

N

j2+j3∈N

χj2(z2)χj3(z3)
∞∑

m,n=1

(−1)m+nq
n(n−1)

2
+

m(m−1)
2

× (1 − qn+m)(q(n−m)(j2−j3) − q(n−m)(j2+j3+1))

(2.22)

Thereby, we completed out first task, namely to decompose the full partition function Z

into irreducible representations of the bosonic subalgebra of osp(4|2).
Our next issue is to combine bosonic characters back into the characters of Kac modules

of osp(4|2). Since the even part of osp(4|2) is a subalgebra of osp(4|2), it is clear that the

characters of osp(4|2) Kac modules, possess a decomposition into characters of the bosonic

subalgebra. These decomposition formulas may be inverted such that bosonic characters

can be written as infinite linear combinations of osp(4|2) characters. All necessary details

are provided in appendix C. The resulting expression for the partition function Z is of the

form (2.18) with

ψK
[j1,j2,j3]

(q) =
1

η(q)φ(q)3

∞∑

k=0

∞∑

m,n=1

∞∑

l=0

(−1)m+n+kq2j1(j1+k+2l)q
n(n−1)

2
+

m(m−1)
2

×
k∑

r,s=0

q(n−m)(r−s)(1 − qn+m)(q(n−m)(j2−j3) − q(n−m)(j2+j3+1))

×
[
qj1+

k+2l
2

(k+2l+1) + q−j1+
k+2l

2
(k+2l−1) − q5j1+3+ k+2l

2
(k+2l+5) − q3j1+

k+2l
2

(k+2l+3)
]

=
q2j1(j1−1)

η(q)φ(q)3

∞∑

m,n=1

∞∑

k=−∞

(−1)k
∞∑

l=0

qj1(2|k|+4l+1)+ |k|
2

(|k|−1)+l(2l+2|k|−1)(1 − q|k|+2l+2j1)

×(−1)m+nq
n(n−1)

2
+

m(m−1)
2 q(n−m)k(1 − qn+m)(q(n−m)(j2−j3) − q(n−m)(j2+j3+1)) .
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We will now make several transformations and resummations in order to cast this unwieldy

expression into the form (2.19) we have spelled out above. Making the substitution n+m =

r + 2, n − m = s with r ∈ N and s = −r,−r + 2, . . . , r, using the trick (B.2) and then

substituting r → r + 1 gives the result

ψK(q) =
q2j1(j1−1)

η(q)φ(q)3

∞∑

k=−∞

∞∑

r,l=0

(−1)r+kqj1(2|k|+1)+
|k|(|k|−1)

2
+l(2l+2|k|+4j1−1)

(
q|k|+2l+2j1 − 1

)

×q
(r+2)(r+1)

2

(
q(r+1)(j2−j3+k) + q(r+1)(−j2+j3−k)

−q(r+1)(j2+j3+1+k) − q(r+1)(−j2−j3−1−k)
)
.

In order to simplify the sum over r, we now need to split the summation over k into

three parts, according to whether it is positive, zero or negative. We then recombine the

summations over positive and negative k into a single sum and employ another auxiliary

formula (B.3) from appendix B to find

ψK
[j1,j2,j3]

(q) = q2j1(j1−1)−j2(j2+1)−j3(j3+1) 1

η(q)φ(q)3

∞∑

l=0

∞∑

r=0

(−1)r q
r
2
+j1 (2.23)

×
(
q(j2−

r
2
)2 − q(j2+ r

2
+1)2

)(
q(j3−

r
2
)2 − q(j3+ r

2
+1)2

) [
ql(2l+4j1−1)(1 + q2l+2j1)

+
∞∑

k=1

(−1)kqj1(2k+1)+
k(k−1)

2
+l(2l+2k+4j1−1)(1 − qr+1)(q(r+1)(k−1) + q−(r+1)k)

]
.

Once again we need to rearrange the sum over k. Terms can be combined into a single

summation if we let l run over half-integers rather than integers. Making the substitutions

l → 2m and r → n, leads to the formula

ψK
[j1,j2,j3]

(q) =
q2j1(j1−1)−j2(j2+1)−j3(j3+1)

η(q)φ(q)3

∞∑

n,m=0

∞∑

k=−∞

(−1)m+n+kq
m
2

(m+4j1−1)+ n
2
+j1

×
(
q(j2−

n
2
)2−q(j2+ n

2
+1)2

)(
q(j3−

n
2
)2−q(j3+ n

2
+1)2

)
q|k|(2j1+m)+|k|(|k|−1)

2
+(n+1)k .

It is advantageous to split the summation over k again depending on whether k is negative

or non-negative. Then we substitute r for the sum r = m + k and s for the difference

s = m− k. After some rather trivial but tedious steps we can thereby bring ψK into the

form

ψK
[j1,j2,j3]

(q) =
q2j1(j1−1)−j2(j2+1)−j3(j3+1)

η(q)φ(q)3

∞∑

n,m=0

(−1)m+nq
m
2

(m+4j1+2n+1)+ n
2
+j1

×
(
q(j2−

n
2
)2 − q(j2+ n

2
+1)2

) (
q(j3−

n
2
)2 − q(j3+ n

2
+1)2

) 2m∑

s=0

q−s(n+1) .

It is left to the reader to use lemma (B.2) in order to show that this is equal to the

formula (2.19) we spelled out at the beginning of this section. Before we conclude our

discussion of the large volume limit, let us stress that our decomposition (2.18) does not
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imply that states actually transform in Kac modules of osp(4|2). The partition sum does not

contain any information on how irreducible atypical representations are actually combined

into indecomposables of osp(4|2). For us, the characters of Kac modules were simply a

convenient basis to use.

3. The OSP(4|2) GN model and the supersphere S3|2

In this section we shall study the conjectured dual GN model. We begin with the free

bulk theory defined by eq. (1.5). After a brief discussion of the bulk spectrum for generic

S we specialize to S = 1 and re-express the bulk partition function through characters

of the model’s affine ôsp(4|2) symmetry at level k = 1.6 In section 3.2 we analyze one

particular symmetry preserving boundary condition and spell out its spectrum. The latter

is then decomposed according to the action of the global osp(4|2) symmetry in the third

subsection. Once such a Casimir decomposition has been performed, we can apply the

results of [23] and determine the boundary spectrum throughout the entire moduli space

that is generated by the deformation. We shall show that at R = ∞ we recover precisely

the spectrum of the volume filling brane in the PCM on the supersphere S3|2.

3.1 Free field construction of the bulk theory

Before we discuss the spectrum and symmetries of the free Gross-Neveu model (1.5), it is

useful to recall how things work for the case S = 0, i.e. for the fermionic description of the

free boson. As is well known, the compactified free boson at radius R = 1 is equivalent to

the free field theory of two real fermions. Each of the two fermionic fields gives rise to a

copy of the Ising model with c = 1/2. The two factors, however, are coupled by an orbifold

construction to ensure that only sectors contribute in which both fermions obey the same

(anti-)periodic boundary conditions. In the next few paragraphs we would like to formalize

this construction. It will turn out rather useful for the generalization to S > 0.

Let us begin with a few words on the sectors of the critical Ising model. We recall

that the Virasoro algebra with c = 1/2 possesses three sectors which we shall label by

the conformal weights of their ground states, i.e. through [0], [1/2] and [σ] = [1/16]. The

character functions of these sectors read as follows,

χǫ(q) =
1

2

(√
θ3
η

+ (−1)2ǫ

√
θ4
η

)
, χσ(q) =

1√
2

√
θ2
η

(3.1)

with the slightly unusual notation ǫ = 0, 1/2. This will turn out rather convenient below.

The product of two Ising models contains a special sector γ = [1/2, 1/2] with weight h = 1.

It generates an abelian group Γ0 = Z2 in the fusion ring. Elements of this group are called

simple currents since their fusion with an arbitrary representation always yields a single

contribution. We claim that the corresponding simple current orbifold model is equivalent

to the compactified free boson at R = 1.

6The discrepancy between our value k = 1 and the k = −1/2 that appears in the work of Candu and

Saleur is entirely due to different conventions.
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The construction of a simple current orbifold proceeds in several simple steps. To

begin with, we have to list all sectors [J ] of the theory which possess integer monodromy

charge QJ(γ) = hJ + hγ − hγ×J . These are then organized into orbits Oa under the action

of the simple current group Γ. Each such orbit Oa contributes one term Za to the partition

function of the orbifold model, with a coefficient |Γ|/|Oa| that is given by the ratio between

the order |Γ| of the orbifold group and the length |Oa| of the orbit (see e.g. [27]). In our

case, there exist five sectors [J ] = [ǫ1, ǫ2] and [J ] = [σ, σ] with integer monodromy charge.

Under the action of Γ0 they are organized into three orbits, two of length two and one

that is left invariant by fusion with γ. Consequently, the associated simple current orbifold

invariant becomes

Z
orb(Γ0)

Ising2 (q) = ZFF
S=0(q) =

∣∣χ(0,0) + χ(1/2,1/2)

∣∣2 +
∣∣χ(0,1/2) + χ(1/2,0)

∣∣2 + 2
∣∣χ(σ,σ)

∣∣2 . (3.2)

The characters on the right hand side are products of characters of the c = 1/2 Virasoro

algebra, i.e. χ(0,1/2)(q) = χ0(q)χ1/2(q) etc. According to the claims we stated above, the

simple current orbifold (3.2) agrees with the free boson compactified at radius R = 1,

ZFF
S=0(q) =

1

|η(q)|2
∑

n,w∈Z

q
1
8
(n+2w)2 q̄

1
8
(n−2w)2 = ZR=1(q) . (3.3)

The detailed proof of this identity can be found e.g. in the lectures of Ginsparg [28]. Our

aim now is to extend eq. (3.3) to the case S > 0.

For S > 0, our theory (1.5) is built from 2S+2 real fermions whose properties we have

reviewed already. In addition there are also S free βγ-systems with central charge c = −1

(see [29] for a detailed analysis of this rather unusual CFT in the context of our work).

For osp(2S + 2|2S) symmetry it is necessary that all these fields obey the same boundary

conditions, i.e. are either all periodic or all anti-periodic. Before we spell out the relevant

bulk partition function, we need a bit more background on the βγ-systems.

As in the case of real fermions, we shall consider sectors which differ by the choice of

boundary conditions on the fields β and γ. Let us introduce a family of ground states |ν〉
for ν ∈ 1

2Z. These states are characterized by the conditions

βr+ν |ν〉 = 0 , γr−ν |ν〉 = 0 for r = 1/2, 3/2, 5/2, . . . (3.4)

From the ground states we generate the corresponding sectors by application of raising

operators. If we assign charges qβ = 1/2 and qγ = −1/2 to the modes of the fields β and

γ, respectively, and qν = ν/2 to the ground state |ν〉 the generating function for the sector

ν reads,

χ(ν)(q, y) = q
1
24

− ν2

2 y
ν
2

∞∏

n=0

1

(1 − y
1
2 qn+ 1

2
−ν)(1 − y−

1
2 qn+ 1

2
+ν)

=
q−ν2/2 y

ν
2 η(q)

θ4(q, y1/2q−ν)
(3.5)

All the constructed sectors carry an action of an affine ŝl(2) current algebra at level k =

−1/2. In terms of the fields β and γ the three currents are constructed as follows,

E1
+(z) =

1

2
β2(z) , H1(z) = −1

2
(βγ)(z) , E1

−(z) = −1

2
γ2(z) . (3.6)
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Consequently, we can decompose the generating functions (3.5) into characters of irre-

ducible representations of ŝl(2)−1/2. In case of χ(0), for example, the decomposition is

given by

χ(0)(q, y) =
η(q)

θ4(q, y1/2)
= χ

k=−1/2
0 (q, y) + χ

k=−1/2
1/2 (q, y) . (3.7)

The two characters on the right hand side belong to irreducible highest weight representa-

tions with lowest weight h = ǫ ∈ {0, 1/2},

χk=−1/2
ǫ (q, y) =

η(q)

2

[
1

θ4(q, y1/2)
+ (−1)2ǫ 1

θ3(q, y1/2)

]
. (3.8)

Let us note that the ground states transform in representations of spin j = ǫ. Nevertheless,

we shall continue to think of the subscript of χ as the conformal weight rather than the

spin. Similar decomposition formulas exist for all the other functions (3.5). All of them

are related by the action of spectral flow automorphisms. In particular, we have

χ(1/2) = χ
k=−1/2
σ;+ + χ

k=−1/2
σ;−

with χ
k=−1/2
σ;± (q, y) =

y1/4η(q)

2

[
1

iθ1(q, y−1/2)
± 1

θ2(q, y−1/2)

]
. (3.9)

The two characters on the left hand side belong to the two irreducible lowest weight repre-

sentations of the current algebra with spin j = 1/4 and j = 3/4. Their ground states have

the same conformal weight h = −1/8.

We are now ready to discuss the relevant bulk modular invariant for the theory (1.5)

with S > 0. Let us begin with the product of S βγ-systems and 2S+2 real fermions. This

theory contains a group ΓS of simple currents that consists of all elements γ of the form

γ = [ǫ1, . . . ǫS; ǫS+1, . . . , ǫ3S+2] with ǫi ∈ {0, 1/2} and ǫ ≡
3S+2∑

i=1

ǫi = 0 mod 1 .

The first S entries of γ denote sectors of the βγ-system while the remaining ones are

representing sectors in the Ising models. Together, the elements γ generate the abelian

group ΓS
∼= Z

3S+1
2 .

Let us first deal with the sector involving representations with vanishing spectral flow,

ν = 0. Under the action of ΓS, the sectors with vanishing monodromy charge split into two

orbits of maximal length. Hence we are led to the following contribution to the partition

function,

ZFF
S,0(q, y1, . . . , yn) =

∣∣∣∣
∑

γ∈ΓS

χγ×[0,...,0;0,...,0]

∣∣∣∣
2

+

∣∣∣∣
∑

γ∈ΓS

χγ×[0,...,0;0,...,0,1/2]

∣∣∣∣
2

. (3.10)

However, the total theory has to be invariant under the spectral flow symmetry. Hence we

have to add twisted contributions ZFF
S,ν . It was already mentioned above that all the bosonic

ghosts and all the fermions have to have identical periodicity conditions in order to not to

spoil osp(2S + 2|2S) symmetry. Consequently the spectral flow must act diagonally, i.e.
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simultaneously on all sectors, by half-integer shifts.7 In the fermionic factors, spectral flow

by ν = 1/2 brings us to σ-representations. Integer units of the spectral flow, however, do

not give anything new. In the ghost sectors things works differently because the application

of a diagonal spectral flow leads to an infinite number of new representations constructed

from the ground states |ν〉 for ν ∈ 1
2Z. Since the orbits of the half-integer spectral flow

representations possess a stabilizer subgroup S of order |S| = 22S+1 with respect to the

action of Γ1 we finally end up with the partition function

ZFF
S (q, y1, . . . , yS) =

∑

ν∈ 1
2

Z

ZFF
S,ν(q, y1, . . . , yS)

=
∑

ν∈Z

[∣∣∣∣
∑

γ∈ΓS

χ
(ν)
γ×[0,...,0;0,...,0]

∣∣∣∣
2

+

∣∣∣∣
∑

γ∈ΓS

χ
(ν)
γ×[0,...,0;0,...,0,1/2]

∣∣∣∣
2
]

+ 22S+1
∑

ν∈Z+ 1
2

∣∣∣∣∣
S∏

a=1

χ(ν)(q, ya)
(
χσ(q)

)2S+2

∣∣∣∣∣

2

.

Here, the superscript (ν) on a function f(yi) of S variables yi is defined through the

prescription f (ν)(yi) = q−Sν2/2f(yiq
−2ν).

The rest of our analysis in this section is now carried out for the special case of S = 1.

Generalizations to larger values of S shall be differed to the next section. The state space of

our orbifold theory can be equipped with the action of an affine ôsp(4|2) Lie superalgebra.

We have already spelled out expressions for the first set of sl(2) currents in equation (3.6)

above. The currents associated with the other two copies if sl(2) take the form

E2
±(z) =

1

2i

[
(ψ1ψ3) − (ψ2ψ4) ± i

(
(ψ1ψ4) + (ψ2ψ3)

)]
, (3.11)

H2(z) =
1

2i

(
(ψ3ψ4) + (ψ1ψ2)

)
, H3(z) =

1

2i

(
(ψ3ψ4) − (ψ1ψ2)

)
,

E3
±(z) =

1

2i

[
(ψ1ψ3) + (ψ2ψ4) ± i

(
(ψ1ψ4) − (ψ2ψ3)

)]
. (3.12)

They generate two commuting copies of the current algebra ŝl(2)1. In addition, we can

introduce the eight fermionic currents through the following expressions

F+++(z) = iβ (ψ3 + iψ4) (z) , F+−−(z) = iβ (ψ3 − iψ4) (z) ,

F++−(z) = iβ (ψ1 + iψ2) (z) , F+−+(z) = iβ (ψ1 − iψ2) (z) ,

and similarly for F−±±(z) with the field β in the above formulas exchanged with γ. Note

that all terms that contribute to the seventeen currents are quadratic in the basic fields.

Since by construction these basic fields are either all in the Neveu-Schwarz sector or in the

Ramond sector, the currents obey periodic boundary conditions on the entire state space.

In order to rewrite the partition function of our bulk theory in terms of affine ôsp(4|2)
7It is worth mentioning that these diagonal spectral flow transformations are also the only ones which

commute with the action of the orbifold group. Note also that half-integer spectral flow on ghosts and

fermions implies integer spectral flow on the currents such as those defined in eq. (3.6) and below.
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characters, we recall the following formulas for characters of an ŝl(2) currents algebra at

level k = 1,

χk=1
0 (q, z) =

θ3(q
2, z)

η(q)
, χk=1

1/2 (q, z) =
θ2(q

2, z)

η(q)
.

The lower index j = 0, 1/2 now denotes the spin of representations of the ŝl(2) current

algebra. In terms of characters of the bosonic current algebras, the orbifold partition

function reads

ZFF
S=1(q, zi) =

∞∑

ν=−∞

∣∣∣χ(ν)
(0;0,0)(q, zi) + χ

(ν)

( 1
2
; 1
2
, 1
2
)
(q, zi)

∣∣∣
2

+

+
∞∑

ν=−∞

∣∣∣χ(ν)

(0; 1
2
, 1
2
)
(q, zi) + χ

(ν)

( 1
2
;0,0)

(q, zi)
∣∣∣
2

(3.13)

where the action of the spectral flow involves the first variable z1 = y only and we

have defined

χ(j1;j2,j3)(q, zi) = χ
k=− 1

2
j1

(q, z1) χ
k=1
j2 (q, z2) χ

k=1
j3 (q, z3) .

To compare the formula (3.13) with our previous expression (3.11) one has to specialize

to z2 = z3 = 1. Going one step further we can combine characters of the bosonic current

algebra into ôsp(4|2)1 characters according to,

χ{0}(q, zi) = χ(0;0,0)(q, zi) + χ( 1
2
; 1
2
, 1
2
)(q, zi) , (3.14)

χ{1/2}(q, zi) = χ(0; 1
2
, 1
2
)(q, zi) + χ( 1

2
;0,0)(q, zi) . (3.15)

The results of this section may then be summarized through the following simple formula

ZFF
S=1(q, zi) =

∞∑

ν=−∞

∣∣∣χ(ν)
{0}(q, zi)

∣∣∣
2
+

∞∑

ν=−∞

∣∣∣χ(ν)
{1/2}(q, zi)

∣∣∣
2
, (3.16)

i.e. the orbifold partition function is the charge conjugate modular invariant partition

function for the sectors {0} and {1/2} of the ôsp(4|2)1 current algebra. It is remarkable

that spectral flow relates all the representations occurring here and that the fusion is purely

abelian [29]. In contrast to other WZNW theories on supergroups [30 – 33] this guarantees

the existence of an “irreducible” theory without logarithmic correlation functions. By

fermionizing the βγ systems and keeping additional zero-modes, however, one can as well

construct a “logarithmic lift” of the theory [34] (see also [31]).

3.2 Boundary conditions and their spectra

In the next step we wish to discuss boundary conditions in the orbifold theory constructed

above. We will focus on a particular brane. Our choice might seem a bit ad hoc at first,

but will later turn out to be deformed into the space-filling brane of the PCM. As before,

we treat the cases S = 0 and S = 1 in some detail and postpone comments on higher values

of S to the following section.
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In the case S = 0 we need to construct a brane in the orbifold (3.2) which corresponds to

a Neumann brane in the free boson theory at large radius. But in this case the deformation

is well known. When we reduce the radius from R = ∞ to R = 1 we pass the self-dual

radius where Neumann and Dirichlet branes cannot be distinguished and get exchanged

by T-duality. Consequently the brane we would like to describe in the free boson theory

at R = 1 is the Dirichlet brane which has the spectrum

ZR=1
D (q) =

∑

w∈Z

q
w2

2

η(q)
=

θ3(q)

η(q)
. (3.17)

We will now show how the same spectrum can be obtained from the orbifold model.

The Ising model is the simplest of the Virasoro minimal models. It has precisely three

different conformal boundary conditions, one for each of irreducible representations [0],

[1/2] and [σ] = [1/16]. Here and in the following we shall labels boundary conditions

and sectors by the same symbol. The spectrum of excitations between any two of these

boundary conditions is described by the respective fusion rules [35]. In order to make

contact with the bosonic description, let us try to rewrite the partition function (3.17)

through characters (3.1) of the two Ising models. After simple manipulations we find

ZR=1
D (q) =

θ3(q)

η(q)
= χ(0,0) + χ(1/2,1/2) + χ(0,1/2) + χ(1/2,0) . (3.18)

The spectrum we find can be considered as the orbit of the sum [0, 0] ⊕ [0, 1/2] under

the action of the orbifold group Γ0. Since [0, 0] ⊕ [0, 1/2] is precisely the fusion product

[0, σ] × [0, σ] we conclude that the desired point-like brane at R = 1 descends under the

orbifold construction from the boundary condition [0, σ] in the product of two Ising models.

The conclusion is fully consistent with the free fermion construction of the bosonic current

J ∼ ψ1ψ2 of the R = 1 model. In fact, as is well known, the boundary label [0, σ]

corresponds to the gluing conditions

ψ1(z) = −ψ̄1(z̄) ψ2(z) = ψ̄2(z̄) (for z = z̄) (3.19)

in the underlying free fermion description. The sign in the gluing condition for the first

fermionic field is associated with the non-trivial boundary label [σ]. It implies that the

current J ∼ ψ1ψ2 satisfies Dirichlet boundary conditions J = −J̄ all along the boundary.

Let us now turn our attention to the case S = 1. We would like to focus on a brane

which is associated with the twisted gluing conditions

J1(z) = J̄1(z̄) , J2(z) = J̄3(z̄) , J3(z) = J̄2(z̄) (3.20)

for the bosonic currents J i = Ei
at

a all along the boundary at z = z̄. The underlying gluing

automorphism Ω permutes the second and third copy of sl(2) in the bosonic subalgebra.

It can easily be seen that Ω extends to an involution on the entire superalgebra osp(4|2).
The corresponding gluing conditions for fermionic currents read,

F ξ±±(z) = F̄ ξ±±(z̄) F ξ±∓(z) = F̄ ξ∓±(z̄) . (3.21)
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A quick look back at the free field realization of the currents (3.11) suggests to implement

the boundary conditions (3.20) and (3.21) through the following gluing prescription for the

fundamental field multiplet,

ψ1(z) = −ψ̄1(z̄) , ψi(z) = ψ̄i(z̄) (i 6= 1) , βa(z) = β̄a(z̄) , γa(z) = γ̄a(z̄) .

(3.22)

Indeed, equations (3.22) reproduce the permutation of currents displayed in eqs. (3.20)

and (3.21) upon insertion into eqs. (3.11).

Just as in the case S = 0 above, having a non-trivial gluing condition for the fermion

is associated with the occurrence of the brane label σ in the Ising model description.

Hence we propose that the desired orbifold brane may be constructed from the brane

B = [0, 0;σ, 0, 0, 0] in the covering theory. The spectrum for the latter is again given by

fusion, and taking the orbit with respect to the orbifold group Γ1 one easily arrives at

ZFF
B;S=1 =

∑

γ∈Γ1

[
χγ×[0,0;0,0,0,0] + χγ×[0,0;0,1/2,0,0]

]
. (3.23)

For later convenience this result may also be rewritten in terms of irreducible characters

of the underlying bosonic current algebra, leading to

ZFF
B;S=1(q, zi) = χ(0;0,0) + χ(0; 1

2
, 1
2
) + χ( 1

2
; 1
2
, 1
2
) + χ( 1

2
;0,0) = χ{0} + χ{1/2} . (3.24)

In the second step we have combined characters of the bosonic subalgebra into characters of

the full ôsp(4|2)1, using the formulas (3.14) and (3.15). The spectrum of the orbifold brane

preserves the affine Lie superalgebra, as desired. We also note that our partition function

ZFF
B;S=1(q) is identical to the one that appeared in the work of Candu and Saleur [24, 25].

We shall now see that it is related through a deformation to the partition function of the

volume filling brane in the PCM model.

3.3 Casimir decomposition in the free GN model

Having found the full spectrum of an osp(4|2) symmetric brane in the free field theory (1.5),

our next task is to expand it in terms of the characters χK
λ . In other words, we need to

find the branching functions ψK
Λ (q) in the decomposition,

Z̃ = ZFF
B;S=1(q, zi) =

∑
Λ
χK

Λ (z1, z2, z3) ψ̃
K
Λ (q) . (3.25)

This expansion is of the same form (2.18) as in the PCM at R = ∞. Only the branching

functions ψ̃K are different. The following short analysis will show that they read

ψ̃K
[j1,j2,j3]

(q) =
1

η(q)φ3(q)

∞∑

n,m=0

(−1)n+mq
m
2

(m+4j1+2n+1)+j1+ n
2

×
(
q(j2−

n
2
)2 − q(j2+

n
2
+1)2

)(
q(j3−

n
2
)2 − q(j3+ n

2
+1)2

)
.

(3.26)

Before we derive this formula, we wish to comment on its implications. A short look back

to formula (2.19) reveals a remarkable similarity between the two branching functions of
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the partition functions Z of the PCM at R = ∞ and Z̃ of the free fields theory (1.5). In

fact, they are identical up to an overall prefactor,

ψK
[j1,j2,j3]

(q) = q2j1(j1−1)−j2(j2+1)−j3(j3+1) ψ̃K
[j1,j2,j3]

(q) . (3.27)

For the time being this equation may simply be considered a curious observation regarding

the similarities of the two Casimir decompositions. We shall explain in the next subsection

how it relates to the claim that the boundary spectrum for the PCM at R = ∞ may be

obtained by the current-current perturbation (1.6) from the free field theory (1.5).

In order to calculate the branching functions ψ̃K from the partition function Z̃, we

proceed as in section 2.3. In a first step we shall expand Z̃ in terms of characters of the

bosonic subalgebra osp(4|2)0̄. Then we combine the bosonic building blocks into characters

of Kac modules for osp(4|2). The resulting expression for the branching function will require

only very little additional analysis in order to cast them into the form (3.26).

The decomposition of Z̃ into bosonic characters departs from the representation (3.24)

of Z̃ and then employs the following expansion formulas for ŝl(2) characters into sums of

characters of sl(2),

χ
k=− 1

2
a (τ, u) =

q
1
24

φ(q)2

∑

k∈N+a

χk(z)

∞∑

m=0

(−1)mq
m
2

(m+4k+1)+k
(
1 − q2m+1

)
(3.28)

χk=1
a (τ, u) =

1

η(q)

∑

m∈N+a

χm(z)
(
qm2 − q(m+1)2

)
(3.29)

where a ∈
{
0, 1

2

}
. From the equality (3.24) and the two decomposition formulas (3.28)

and (3.29) it is clear that Z̃ can be written as

Z̃ =
∑

(j1,j2,j3)∈
1
2

N3

j2+j3∈N

χ(j1,j2,j3)(z1, z2, z3) ψ̃
B
(j1,j2,j3)

(q) (3.30)

where χ(j1,j2,j3) are the characters of the irreducible representations of osp(4|2)0̄, as before,

and the branching functions ψ̃B are given by

ψ̃B
(j1,j2,j3)

(q) =
1

η(q)φ3(q)

∞∑

m=0

(−1)m q
m
2

(m+4j1+1)+j1 (1 − q2m+1)

× (qj2
2 − q(j2+1)2) (qj2

3 − q(j3+1)2) .

(3.31)

Before we proceed let us note that the branching functions ψ̃B
Λ possess the following im-

portant symmetry properties necessary for a proof in appendix C,

ψ̃B
(j1,j2,j3)

(q) = −ψ̃B
(−j1−1,j2,j3)

(q) = −ψ̃B
(j1,−j2−1,j3)

(q) = −ψ̃B
(j1,j2,−j3−1)(q) . (3.32)

These imply in particular that ψB
(j1,j2,j3)

(q) vanishes identically if any of the spin labels ja
is equal to ja = −1/2. As in our analysis of the PCM’s partition function Z in section 2.3,

we can express all characters of representations of the bosonic subalgebra as infinite linear
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combinations of the characters of Kac modules. The required formulas can be found in

appendix C. With their help we now arrive at the following result for ψ̃K
Λ ,

ψ̃K
[j1,j2,j3]

(q) =
1

η(q)φ3(q)

∞∑

n,m=0

(−1)n+m q
m
2

(m+4j1+1)+j1+mn+ n
2 (1 − q2m+1)

×
[ n
2
]∑

k=0

(
q(j2−

n
2
+k)2 − q(j2+

n
2
−k+1)2

) (
q(j3−

n
2
+k)2 − q(j3+ n

2
−k+1)2

)

=
1

η(q)φ3(q)

∞∑

n,m=0

(−1)n+m q
m
2

(m+4j1+2n+1)+j1+
n
2 (1 − q2m+1)

×
(
q(j2−

n
2
)2 − q(j2+

n
2
+1)2

) (
q(j3−

n
2
)2 − q(j3+ n

2
+1)2

) ∞∑

k=0

q(2m+1)k .

The sum over k at the end of this formula is a simple geometric series which cancels the

last term in the first line. Thereby, we recover the expression (3.26) we spelled out at the

beginning of this subsection.

3.4 Deformation from free GN model to free PCM

The main result of our analysis so far was summarized concisely in eq. (3.27). In order

to fully appreciate its content, let us review a few results from [23]. In that paper, the

deformation of conformal weights was studied for the WZNW model on PSL(2|2). Many of

the central results of [23], however, hold much more generally for models whose symmetries

are described by an affine Lie superalgebra with vanishing dual Coxeter number.

To begin with, let us specify the bulk perturbation we would like to consider. As we

shall argue momentarily, it is generated by the field,

Φ =
∑

κµνJ
µ(z)Ω(J̄ν(z̄)) (3.33)

where the summation extends over all 17 bosonic and fermionic directions. The auto-

morphism Ω we inserted here is the same as the gluing automorphism that was defined

implicitly through our gluing conditions (3.20) and (3.21) in section 3.2. Note that the

perturbing operator Φ breaks the global symmetry from osp(4|2)⊗ osp(4|2) of the free GN

model (1.5) to the twisted diagonal subalgebra. In other words, the symmetry transfor-

mations of the perturbed model are generated by elements of the form X ⊗ 1 + 1 ⊗Ω(X).

This means that any perturbing operator of the form Φ preserves half of the global bulk

symmetries. What depends on the choice of the automorphism Ω is the precise set of trans-

formations that is preserved. Similar statements can be made about boundary conditions.

As we discussed in section 3.2, the boundary theory we put forward to compare with the

boundary spectrum of the PCM required to select a non-trivial gluing automorphism Ω.

If this gluing automorphism would differ from the automorphism Ω in the definition of Φ,

then the boundary condition and the deformation would preserve different sets of symme-

try generators. Hence, the deformed boundary theory would no longer possess a global

osp(4|2) symmetry. Such a theory could be conformal, but it cannot be equivalent to the
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boundary PCM. Therefore, we know that the perturbing operator Φ must involve the same

automorphism Ω that appeared in the gluing condition for currents at the boundary. An

explicit formula for the operator Φ in terms of free fields is derived at the end of appendix

D. The resulting expression agrees with the formula (1.6) for S int that we anticipated in

the introduction.

Having specified the deforming operator, we are now ready to discuss the properties

of the deformation it generates. Here we shall closely follow the the recent analysis in [23].

Everything we shall claim below is based on a rather simple mathematical result that was

first formulated and exploited in the work of Bershadsky et. al. [17] for psl(N|N), but holds

equally for osp(2S + 2|2S). Consider some osp(2S + 2|2S) invariant ∆, such as e.g. a

conformal weight, and suppose that ∆ may be written as ∆ = Cabcf
abc where fabc are the

structure constants of osp(2S + 2|2S) and Cabc are some numbers. Then ∆ can be shown

to vanish.

We would like to apply this mathematical lemma to the computation of conformal

weights. To evaluate the change of conformal weights away from the free GN model, we

perform a perturbative analysis of 2-point functions in our theory. In any such computation

of perturbed correlators, the initial step is to remove all the current insertions through

current algebra Ward identities. In the process, pairs of currents get contracted using

Jµ(z)Jν(w) =
ifµν

σ

z −w
Jσ(w) +

kκµν

(z − w)2
+ . . . ∼ kκµν

(z − w)2
. (3.34)

The first equality is the usual operator product for osp(4|2) currents. Since we are only

interested in computing the invariants h, we can drop all terms that involve the structure

constants f of the Lie superalgebra osp(4|2). This applies to the first term in the above

operator product which distinguishes the non-abelian currents from the abelian algebra of

flat target spaces. Here and in the following we shall use the symbol ∼ to mark equalities

that are true up to terms involving structure constants. In conclusion, we have seen that,

as far as the computation of conformal dimensions is concerned, we may neglect the non-

abelian nature of the currents Jµ. The remaining non-zero terms correspond one by one

to terms in the radius deformation of a compactified free boson. Hence, they can be

regularized and summed as in the abelian case.

In [23] several other statements were needed to study a deformation that preserved

simultaneously both left and right global symmetries. The perturbation (1.6) we consider

here, however, is of a much simpler type. We can therefore directly move on to evaluate the

conformal dimension of boundary fields. Unlike in [23], the following arguments apply to

all boundary conditions, as long as they preserve the affine ôsp(4|2) symmetry. It does not

require any further assumptions on the localization of the brane. Let Ψ be some multiplet

of boundary fields transforming in a representation Λ of osp(4|2). We denote by h0(Ψ)

the conformal weight of Ψ at the WZ-point. Upon deformation with the field (3.33), the

weight of Ψ behaves as

h(Ψ) = h0(Ψ) − 1

2

g2

1 + g2
C2(Λ) = h0(Ψ) +

1

2

(
1

R2
− 1

)
C2(Λ) (3.35)
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where C2 is the quadratic Casimir element of the Lie superalgebra osp(4|2), as before.

Through the Casimir decomposition (3.25) of the boundary partition function Z̃ we

have separated all boundary fields according to their osp(4|2) transformation law. This now

allows us to evaluate the shift of conformal weights for entire blocks rather than individual

field multiplets. More concretely, the conformal weights of all fields that are counted by

the branching function ψ̃K
[j1,j2,j3]

undergo the same shift by8

δg(h) = −1

2

g2

1 + g2
C2[j1, j2, j3] =

g2

1 + g2

(
2j1(j1 − 1) − j2(j2 + 1) − j3(j3 + 1)

)

upon perturbation with Φ. Thereby, we can spell out the boundary spectrum of the

perturbed model for any choice of g2 = R2 − 1,

Z̃R(q, zi) = q−
1
24

∑
ji

χK
[j1,j2,j3]

(z1, z2, z3) ×

× q

“

1− 1
R2

”

(2j1(j1−1)−j2(j2+1)−j3(j3+1))
ψ̃K

[j1,j2,j3]
(q) .

(3.36)

For irrational values of the parameter R, the boundary spectrum is rather rich, containing

irrational conformal weights. But as we reach the special value R = ∞, all conformal

weights become integers. Equation (3.27) tells us even more: At this particular point, the

perturbed boundary partition function coincides with the partition function Z of volume

filling branes in the PCM on the supersphere S3|2 in the limit R→ ∞. For a few selected

multiplets, the deformation from R = ∞ to R = 1 had been carried out in [25]. By

performing the Casimir decompositions explicitly, we were able to extend such studies to

the entire spectrum.

4. Generalization for higher-dimensional superspheres

The aim of this section is to outline how the previous analysis may be extended to higher

dimensional superspheres. We shall provide explicit formulas for the relevant boundary

spectra of the PCM at R = ∞ and for the free field theory (1.5). The latter are expressed

in terms of characters of the affine ôsp(2S + 2|2S) superalgebra at k = 1. Note that the

level does not depend on S. Since we have not attempted to construct the branching

functions ψΛ and ψ̃Λ for the decomposition with respect to the global osp(2S + 2|2S)

symmetry, we shall content ourselves with a few non-trivial tests. These are discussed in

the second subsection. We believe that a full analysis, as in the case of S = 1, is possible

but cumbersome.

4.1 Partition functions for superspheres at R = 1,∞

The first task is to spell out the spectrum of the PCM with Neumann boundary condi-

tions at R = ∞. It turns out that our formula (2.17) for S = 1 admits the following

8Let us recall that all irreducible multiplets that can be tied together in an indecomposable representation

must have identical Casimir eigenvalues, see appendix A.
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straightforward generalization,

ZPCM
N ;S = q−

1
24Z

(S)
0 φ(q)

∞∏

n=1

∏S
m=1(1 + ymq

n)(1 + y−1
m qn)

∏S+1
k=1 (1 − xkqn)(1 − x−1

k qn)
. (4.1)

Here, the subscript N stands for Neumann boundary conditions and the minisuperspace

contribution is given by

Z
(S)
0 = lim

t→1
(1 − t2)

∏S
m=1(1 + ymt)(1 + y−1

m t)
∏S+1

k=1 (1 − xkt)(1 − x−1
k t)

. (4.2)

As before, the factor Z
(S)
0 describes the space of functions on S2S+1|2S . As mentioned

above, we have not performed the analysis of section 2.3 for the more general partition

function ZPCM
N ;S , though this would surely be possible.

Next let us turn to the free GN model (1.5). Large parts of our analysis of the bulk

spectrum were already performed for generic S. Once more, the theory possesses an affine

ôsp(2S + 2|2S) symmetry with level k = 1 (see appendix D for an explicit construction

of the generators in terms of the basic fields). The bulk theory can be shown to possess

a symmetry preserving boundary condition whose spectrum closely resembles eq. (3.24).

Before we are able to spell out the details, we shall quote from [36] the following expressions

for characters of the affine Lie algebra ŝo(2S + 2) at level k = 1,

χso
(0)(q, xi) =

1

2η(q)S+1

(
S+1∏

i=1

θ3(q, xi) +

S+1∏

i=1

θ4(q, xi)

)
,

χso
(f)(q, xi) =

1

2η(q)S+1

(
S+1∏

i=1

θ3(q, xi) −
S+1∏

i=1

θ4(q, xi)

)
.

(4.3)

Note that ŝo(2S + 2)1 is part of the bosonic subalgebra of ôsp(2S + 2|2S)1. Similarly, we

also need the corresponding characters of the affine ŝp(2S) at k = −1
2

χsp
(0)(q, yi) =

η(q)S

2

(
1∏S

i=1 θ4(q, yi)
+

1∏S
i=1 θ3(q, yi)

)
,

χsp
(f)(q, yi) =

η(q)S

2

(
1∏S

i=1 θ4(q, yi)
− 1∏S

i=1 θ3(q, yi)

)
.

(4.4)

The characters we have just listed, furnish the basic building blocks for the relevant char-

acters of our superalgebra ôsp(2S + 2|2S)1 at level k = 1,

χosp
{0} = χso

(0)χ
sp
(0) + χso

(f)χ
sp
(f) ,

χosp
{f} = χso

(f)χ
sp
(0) + χso

(0)χ
sp
(f) .

(4.5)

For a particular choice of boundary conditions in the free field theory (1.5) the boundary

partition function takes the following form

ZFF
B;S(q, zi) = χosp

{0} + χosp
{f} =

1

η(q)

∏S+1
i=1 θ3(q, xi)∏S
j=1 θ4(q, yj)

, (4.6)
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where the first S variables zi = yi are associated with the symplectic part while the

remaining S + 1 variables zS+i = xi are affiliated with Cartan elements of the orthogonal

subalgebra. Eq. (4.6) generalizes equation (3.24) to S ≥ 1.

4.2 Test of the duality

As in the previous section, we would like to show that the two partition functions (4.1)

and (4.6) are related to each other by deformation with the interaction term (1.6) or,

equivalently, by deforming the radius R of the PCM from R = ∞ all the way down to

R = 1. In principle, this may be achieved by repeating our analysis in sections 2.3 and 3.3

above. The first step is to decompose the partition function (4.6) of the PCM at R = ∞
in terms of character functions for the global osp(2S + 2|2S) symmetry,

ZPCM
N,S =

∑

Λ∈J

χ
osp(2S+2|2S)
Λ (zi)ψ

(S)
Λ (q) , (4.7)

where J is the set of all integral dominant labels of osp(2S+2|2S) that are compatible with

the consistency conditions of [37]. The existence of such a decomposition is guaranteed,

but in case of S > 1 explicit formulas for the branching functions ψ would still need to be

worked out.

The second step is to pass from R = ∞ to finite values of the radius. Since all the

general results we outlined in section 3.4 hold for any value of S, the boundary partition

function of the PCM at radius R reads

Z(R) =
∑

Λ∈J

χ
osp(2S+2|2S)
Λ (xi, yj)ψ

(S)
Λ (q) q

1
2

1
R2 C(Λ) . (4.8)

Here we expressed the partition function through the branching functions ψ at R = ∞
rather than through the ones at R = 1, as in section 3.4. Therefore, the coefficient of the

Casimir element had to be properly adjusted. Note also that we normalized the quadratic

Casimir operator such that C2(f) = 1 for all values of S.

For the PCMs on odd dimensional superspheres S2S+1|2S to be dual to the GN model,

we would have to find

Z(R = 1) = ZFF
B;S , (4.9)

provided we have correctly identified the appropriate boundary condition in the free field

theory (1.5). Throughout the last sections, we have checked relation (4.9) explicitly for

S = 1. It is quite amusing to verify it also in the much simpler case of S = 0. When S = 0,

the decomposition of the partition function at R = ∞ into characters of osp(2|0)∼= so(2),

takes a particularly simple form,

ZPCM
N,S=0 = q−

1
24φ(q)

∑

n∈Z

zn
∑

k∈Z

zk

φ(q)2

∞∑

m=0

(−1)m
(
q

m+1
2

(m+2|k|) − q
m+1

2
(m+2(|k|+1))

)

=
1

η(q)

∑

n∈Z

zn =
∑

n∈Z

χn(z)ψ(0)
n (q) , (4.10)
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with χn(z) = zn and ψ
(0)
n (q) = 1/η(q). Following our equation (4.8), the partition function

for radius R becomes

Z(R) =
1

η(q)

∑

n∈Z

zn q
1
2

1
R2 n2

.

Therefore, at R = 1 we obtain

Z(R = 1) =
1

η(q)

∑

n∈Z

znq
n2

2 = ZFF
B;S=0(q, z) , (4.11)

in agreement with our general prediction (4.9).

Although we have not been able to find a conclusive proof of (4.9) for S ≥ 2, we wish

to give some additional supporting evidence. To this end, we need a few more details about

representations of osp(2S + 2|2S) and the corresponding values of the quadratic Casimir

element. The representations we are interested in are labeled by integral dominant highest

weights Λ of the form

Λ = a1δ1 + a2(δ1 + δ2) + · · · + aS(δ1 + · · · δS) + aS+1ǫ1 + · · · + a2S−1(ǫ1 + · · · ǫS−1)

+a2S
ǫ1 + · · · + ǫS − ǫS+1

2
+ a2S+1

ǫ1 + · · · + ǫS + ǫS+1

2
, (4.12)

where δi and ǫj appear in the construction of the weight system of osp(2S + 2|2S) and

obey (ǫi, ǫj) = −(δi, δj) = δij . The numerical coefficients ai ∈ N must moreover obey some

additional consistency conditions that can be found in [37]. The value of the quadratic

Casimir in the representation of weight Λ can now be expressed in terms of the coefficients

ai as,

CΛ = (Λ,Λ + 2ρ)

= −
S∑

i=1

( S∑

j=i

aj − 2i

) S∑

k=i

ak +
(a2S − a2S+1)

2

4

+

S∑

i=1

( S−1∑

j=i

aS+j +
a2S + a2S+1

2
+ 2(S + 1 − i)

)( S−1∑

k=i

aS+k +
a2S + a2S+1

2

)
.

The fundamental representation corresponds to a1 = 1 and ai = 0 for i 6= 1 so that

Cδ1 = −(1 − 2) = 1 for all S. The value of the quadratic Casimir does not only determine

the deformation of conformal weights, see eq. (4.9). It is also needed to compute the

conformal weight

hΛ =
CΛ

2k
(4.13)

of fields that are primary with respect to the underlying affine superalgebra at level k. In

our case, the level k must be set to k = 1, as before.

After this preparation we can begin to test equation (4.9). Let us first try to recover

the ground states of the free field theory at R = 1. It is clear that the vacuum state at

R = 1 is obtained by deforming the unique osp(2S + 2|2S) invariant field with weight

h = 0 at R = ∞. So, we can turn to the ground states in the second sector of eq. (4.6)
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right away. From (4.7) we infer that the boundary PCM contains a single field multiplet

that transforms in the fundamental representation with Λ = δ1 and has conformal weight

h = 0. Under the proposed deformation, the conformal weight of this multiplet is lifted

from h = 0 to h = 1/2, since Cδ1 = 1. The latter value agrees precisely with the ground

state energy of the corresponding affine representation when k = 1 as given by (4.13).

We want to go a little further and recover states in the R = 1 model whose weight

is one above the ground states. Let us pick, for example, a multiplet that transforms on

the representation Λ = 3δ1. In the large radius limit, this representation arises for the

first time among the states of weight h = 3. In fact, in eq. (4.1) terms containing y3
1 are

multiplied by q3 or higher powers of q. Since C3δ1 = 3, the proposal (4.9) tells us that

the weight of this multiplet gets deformed to h = 3 − 3
2 = 3

2 . Hence, it should appear

among the first descendants of the sector over the fundamental representation. Indeed,

the irreducible representation with highest weight 3δ1 is contained in the tensor product of

the fundamental representation with the adjoint representation. Thus, ZFF
B;S contains this

representation with h = 3
2 exactly as predicted by eq. (4.9).

5. Conclusions, open questions and outlook

This work contains two central results. To begin with, we have been able to compute

the exact boundary spectrum of a volume filling brane on the 3-dimensional supersphere

S3|2 for all values of the curvature radius R. With a little bit of extra work it should

be possible to extend our formulas to higher dimensional superspheres and also to other

spectra, including the spectrum of the bulk fields (see comments below). The second result

concerns the duality between the supersphere PCM and the osp(2S + 2|2S)GN model.

More specifically, we were able identify the spectrum at the special point R = 1 with

that of a free field theory, namely of the model (1.5) with a particular choice of boundary

conditions. This is consistent with a recent conjecture in [25] and it provides extremely

strong additional support for the duality.

The supersphere S3|2 and its higher dimensional generalizations have been advocated

in the past [21, 22] as good toy models for the world-sheet description of string theory

on AdS5 × S5. Obviously, the defining equations for both AdS5 and S5 are very similar

to our basic constraint (1.1). What is more important, however, is that the world-sheet

models for AdS5 × S5 =
[
PSU(2, 2|4)/SO(1, 4) × SO(5)

]
0

and the supersphere theory give

rise to continuous families of 2D conformal field theories with many common features.

In both cases, the non-abelian global symmetries remain unbroken. On the other hand,

they are not enhanced into affine symmetries, at least not for generic points in the moduli

space. Consequently, it seems reasonable to speculate briefly about possible lessons the

supersphere models might teach us for the world-sheet descriptions of string theory in

AdS5 × S5.9

To begin with, it is certainly possible to determine the exact spectrum of the free

sigma model on the supercoset PSU(2, 2|4)/SO(1, 4) × SO(5) at R = ∞, much as this was

9Similar remarks apply obviously to AdS4 × CP
3.
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done here for the supersphere. The deformation of the spectrum away from R = ∞ cannot

be as simple as in the supersphere case. In fact, we know for sure that there are some

operators whose anomalous dimensions do not possess a quasi-abelian dependence of the

radius R (or the ’t Hooft coupling). It might be interesting, however, to study whether

there is some subset of operators whose dimensions are given by eq. (1.8). Since we have

nothing to say about this right now, let us just imagine that in some way we were able to

deform the entire spectrum. Then we could start to look for special values of the radius

R at which the spectrum contains half-integer or integer values only. We know for sure

that such a point exists, namely the radius R0 for with the string model becomes dual

to the free N = 4 supersymmetric Yang-Mills theory. One might hope that such a point

is described by a free world-sheet theory, just as it is the case for the superspheres. In

this sense, the dual of the free Yang-Mills theory would be the analogue of the free GN

model. If one found such strong-weak coupling duality within the world-sheet description

of strings in AdS, it would reduce the AdS/CFT correspondence to a remaining weak-weak

coupling duality. World-sheet descriptions of weakly coupled gauge theory have appeared

in the literature, see e.g. [38, 39] or the recent work [40] for two developments that seem

relevant for what we have just outlined.

Finding an explicit action for such a free world-sheet model and its deformation might

have two interesting applications. To begin with, it could provide a better starting point

for the quantization of the string theory on AdS5 × S5. In fact, let us point out that our

OSP(2S+2|2S)-GN model is much simpler than the original supersphere PCM: While the

perturbative expansion of the latter contains terms of any order in the basic fields, the

former has no terms beyond fourth order. Furthermore, the perturbative expansion for the

conjectured weakly coupled dual of the strongly coupled AdS5 × S5 sigma model could be

compared order by order to the perturbative expansion in the gauge theory, see again [40].

One might even hope to prove the AdS/CFT duality using such an intermediate world-

sheet model. Of course all this remains mere speculation for now. In particular, it is clear

that our analysis of supersphere models exploited compactness of the target’s bosonic base.

More work is necessary to include non-compact targets such as AdS5 ×S5 or AdS4 ×CP
3.

After all these comments on possible implications for the AdS/CFT correspondence,

we would like to close with a few remarks on the bulk spectrum of the supersphere models.

The analysis of boundary deformations in [23] puts much stress on the fact that computa-

tions where only possible for very particular boundary spectra. In fact, open strings had to

be localized at one point in a background in order to avoid running into mixing problems.

For the superspheres, similar issues do not arise. While [23] focused on a bulk deformation

preserving global left and right transformations simultaneously, the current-current per-

turbation (1.6) considered here is of a very different type. Since the deforming operator

does not involve any tachyonic vertex operators, there is no mixing problem, neither for

boundary theories, nor even for the bulk. On the other hand, the perturbation breaks the

global bulk symmetry down to a single diagonal action of the symmetry algebra. Therefore,

it should be possible to deform bulk spectra, but it might be more difficult to identify the

relevant osp(2S + 2|2S) action as we deform from R = 1 to R = ∞. We will return to

these issues in a future publication.
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A. Some aspects of the representation theory of OSP(4|2)

Our first appendix contains a number of basic notations and results concerning the Lie su-

peralgebra osp(4|2). These are used frequently in the main text. The complex superalgebra

g := osp(4|2) may be realized as the set of matrices

osp(4|2) =

{(
A B

J2B
t D

)
: At = −A and DtJ2 = −J2D

}

with J2 =
(

0 −1
1 0

)
and the standard definition of graded commutators. We have the usual

separation of the superalgebra into a bosonic g0̄ = sp(2) ⊕ so(4) ∼= sl(2)⊕ sl(2) ⊕ sl(2) and

a fermionic g1̄ subspace. In addition, the superalgebra has a Z-grading that is compatible

with its Z2 structure, i.e. g = g−2 ⊕ g−1 ⊕ g0 ⊕ g1 ⊕ g2, where the relation [gi, gj ] = gi+j

holds, with g0 ∼= so(4) ⊕ gl(1), g0̄ = g−2 ⊕ g0 ⊕ g2 and g1̄ = g−1 ⊕ g1.

An integral dominant highest weight Λ = (j1, j2, j3) of g0̄ is also one for the full

superalgebra g if it obeys the consistency conditions:

If j1 = 0 then j2 = j3 = 0 , If j1 =
1

2
then j2 = j3 (A.1)

where the first spin is related to the symplectic subalgebra and the two others to the

orthogonal one. The finite dimensional irreducible representations [Λ] of g are constructed

as follows. Taking an irreducible highest weight representation (Λ) of g0 ∼= so(4) ⊕ gl(1)

with highest weight Λ = (j1, j2, j3) associated to the highest weight vector vΛ, we set

MΛ = U(g)(E−
1 )2j1+1vΛ , KΛ =

(
Indg

p(Λ)
)
/MΛ

where U(g) is the universal enveloping algebra of g, E−
1 is the lowering operator of the

symplectic subalgebra and p = g0 ⊕ g1 ⊕ g2. In the above equation, we have considered the

g0-module (Λ) as a p-module by letting gi, i = 1, 2 act trivially on it. The finite dimensional

representation KΛ is called the Kac module of Λ and is generically irreducible. The set of

Kac modules is divided into typical and atypical ones. If the Kac module KΛ is typical,

then it is guaranteed to be irreducible. In this case we define the simple module [Λ] to be
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KΛ. If, however, one or more of the following atypicality conditions

2j1 = −j2 − j3 ,

2j1 = j2 + j3 + 2 ,

2j1 = ±(j2 − j3) + 1

(A.2)

hold, then KΛ is atypical and will generically contain a maximal invariant subspace IΛ
without being fully reducible, i.e. it will contain indecomposable constituents. In those

cases, we set [Λ] = KΛ/IΛ. It can occur however that IΛ = 0 even though KΛ is atypical.

The eigenvalue of the quadratic Casimir in the simple module [Λ] is given by the

formula

C2(Λ) = −4j1(j1 − 1) + 2j2(j2 + 1) + 2j3(j3 + 1) . (A.3)

In particular, C2(Λ) is always a square, i.e. C2(Λ) = k2, k ∈ N, on atypical representations

[Λ]. The atypical weights Λ = (j1, j2, j3) can be divided into blocks Γk, such that weights

in Γk possess the same eigenvalue C2(Λ) = k2 of the quadratic Casimir element. The

corresponding atypical labels can be listed explicitly [41],

Γ0 =

{
λ0,0 = (0, 0, 0) , λ0,l =

1

2
(l + 1, l − 1, l − 1) , l ≥ 1

}

Γk = {λk,l , l ∈ Z}
(A.4)

where

λk,l =





1
2(−l + 2,−l − k,−l + k) if l ≤ −k
1
2(−l + 1, l + k − 1,−l + k − 1) if − k + 1 ≤ l ≤ 0
1
2(l + 1, l + k − 1,−l + k − 1) if 0 ≤ l ≤ k − 1
1
2(l + 2, l + k, l − k) if k ≤ l

. (A.5)

One sees easily, that the weights λk,−l for k ≥ 1 may be obtained from λk,l by simply

exchanging the second and the third Dynkin label. Furthermore, it is possible to distinguish

the weights λk,l according to the atypicality condition (A.2) they obey. The only weight

to fulfill the first condition is λ0,0. The weights belonging to the second condition are λ0,l

for l ≥ 1 and λk,±l for l ≥ k. Finally, those the satisfy the last atypicality relation are the

λk,±l for l < k.

The only atypical Kac modules K(λk,l) which are irreducible correspond to the weights

λk,0 for k ≥ 0 and to λ0,1. The indecomposable structure of the remaining ones can be

deciphered from the following diagram,

Kλ0,2 : [λ0,2] −→ [λ0,0] ⊕ [λ0,1]

Kλ0,l
: [λ0,l] −→ [λ0,l−1] for l ≥ 3

Kλk,l
: [λk,l] −→ [λk,l−1] for l ≥ 1

Kλk,l
: [λk,l] −→ [λk,l+1] for l ≤ −1 .

(A.6)

The dimension of the typical Kac modules is

dim[K(j1,j2,j3)] = 16(2j1 − 1)(2j2 + 1)(2j3 + 1) (A.7)
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whereas the dimension of the atypical ones may be inferred from their structure, together

with the following formulas for the dimension of the irreducible representations,

dim[λ0,0] = 1 , dim[λ0,1] = 17 , dim[λk,0] = 4k2 + 2

dim[λ0,l] = (2l + 1)
[
(2l + 1)2 − 3

]
for l ≥ 2

dim[λk,l] = (2l + 1)
[
4(k2 − 1) − (2l + 1)2 + 7

]
for l ≤ k − 1

dim[λk,l] = (2l + 3)
[
(2l + 3)2 − 4(k2 − 1) − 7

]
for l ≥ k

(A.8)

where, of course, dim[λk,−l] = dim[λk,l]. The decomposition of KΛ for j1 ≥ 1, whether

typical or not, into irreducible modules of the bosonic subalgebra has been computed

in [42]. It takes the form

[KΛ]g0̄

∼= (j1, j2, j3)
⊕

α,β=± 1
2

(j1 −
1

2
, j2 + α, j3 + β)

⊕

α=±1

[
(j1 − 1, j2 + α, j3) ⊕ (j1 − 1, j2, j3 + α)

]
⊕ 2(j1 − 1, j2, j3)

⊕
⊕

α,β=± 1
2

(j1 −
3

2
, j2 + α, j3 + β) ⊕ (j1 − 2, j2, j3) .

(A.9)

There are a few special cases for which the decomposition is not generic. If j1 ≤ 2, j2 ≤ 1

or j3 ≤ 1 then the above decomposition formula must be truncated at the point where

one ore more of the labels become negative. Moreover, there are two cases for which the

multiplicity of the (j1 − 1, j2, j3) submodule has to be changed. If j1 = 1, j2 > 0, j3 > 0 or

j1 > 1, j2 = 0, j3 > 0 or j1 > 1, j2 > 0, j3 = 0, then this block will appear only once and if

both j2 and j3 are null, then it will not be present at all.

When j1 = 1
2 , the Kac modules KΛ with weight Λ obeying the consistency condi-

tions (A.1) are equal to the irreducible modules
[

1
2 ,

k
2 ,

k
2

]
and they possess the following

structure

[
1

2
,
k

2
,
k

2

]

|g0̄

∼=
(

1

2
,
k

2
,
k

2

)
⊕
(

0,
k + 1

2
,
k + 1

2

)
⊕
(

0,
k − 1

2
,
k − 1

2

)
. (A.10)

Finally, the Kac module K[0,0,0] is trivial.

B. Some useful identities

In this appendix we collect a few definitions and identities that we have employed to obtain

the Casimir decompositions in sections 2.3 and 3.3. We also provide the first few terms in

the Casimir decomposition of the partition function ZFF
B for S = 1.

B.1 Identities used in the Casimir decomposition

To begin with, let us briefly recall the definition of Jacobi’s θ functions. In our conventions
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they are given by

θ1(q|z) = −i
∑

r∈Z+ 1
2

(−1)r−
1
2 zrq

r2

2 = −i z 1
2 q

1
8

∞∏

n=1

(1 − qn)(1 − zqn)(1 − z−1qn−1)

θ2(q|z) =
∑

r∈Z+ 1
2

zrq
r2

2 = z
1
2 q

1
8

∞∏

n=1

(1 − qn)(1 + zqn)(1 + z−1qn−1)

θ3(q|z) =
∑

r∈Z

zrq
r2

2 =

∞∏

n=1

(1 − qn)
∏

r∈N+ 1
2

(1 + zqr)(1 + z−1qr)

θ4(q|z) =
∑

r∈Z

(−1)rzrq
r2

2 =

∞∏

n=1

(1 − qn)
∏

r∈N+ 1
2

(1 − zqr)(1 − z−1qr) .

(B.1)

The following two lemmata contain auxiliary formulas that are needed to rewrite the par-

tition function (2.17) in terms of characters of osp(4|2).

Lemma B.1.

∞∏

n=1

1

(1 − zqn)(1 − z−1qn)
=
∑

n∈Z

zn
∞∑

m=0

(−1)m
q

m
2

(m+2n+1) − q
m
2

(m+2n−1)

φ(q)2
.

Proof. We assume that |q| < |z| < 1, which is the relevant condition for the above expansion

to make sense. We want to find the coefficients fN
l (q) in the relation

∑

l∈Z

fN
l (q)zl =

1

(1 − z)
∏N

n=1(1 − zqn)(1 − z−1qn)
.

To do this, we multiply both sides by z−k−1 and integrate them over z along a contour that

surrounds zero in a counterclockwise direction. In order to stay within the region |z| < 1

it must cling to the unit circle on the inside. The left hand side of the previous equation

gives us the coefficient fN
k (q). The right hand side is zero for z = 0 and the first order

poles that are encircled by the contour are at z = qn for n = 1, . . . , N . Their residues are

given by

lim
z→qn

z−k−1(z − qn)

(1 − z)
∏N

l=1(1 − zql)(1 − z−1ql)
=

(−1)n−1q
n
2
(n−2k−1)

∏N+n
l=1 (1 − ql)

∏N−n
l=1 (1 − ql)

.

If we finally remove our cutoff N by sending N → ∞ we arrive at

1

(1 − z)
∏∞

n=1(1 − zqn)(1 − z−1qn)
=
∑

k∈Z

zk
∞∑

n=0

(−1)n−1q
n
2
(n−1−2k)

φ(q)2
.

Multiplying both sides by 1−z and using the lemma B.2 below to shuffle some minus signs

around completes the proof.
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Lemma B.2.

2n∑

m=1

(−1)mq
m(m−1)

2
−mn = 0 for n ≥ 1

∞∑

m=1

r∑

s=−r

(−1)mq
m(m−1)

2
−m(n+s)(1 − qm) =

∞∑

m=1

r∑

s=−r

(−1)mq
m(m−1)

2
−m(−n+s)(1 − qm) .

Proof. The first equation is shown to be true by splitting the sum in
∑n

m=1 and
∑2n

m=n+1

and showing that they are equal up to a sign. The second equation then follows easily from

the first.

There are a number of very simple auxiliary formulas that are needed for the Casimir

decomposition in section 2.3. Let us only list two of them here

∞∑

r=0

(−1)rq
r(r+2)

4 (1 − qr+2)ar =

∞∑

r=0

(−1)rq
r(r+2)

4 (ar − ar−2) (B.2)

(
q(j2−

r
2
)2 − q(j2+ r

2
+1)2

)(
q(j3−

r
2
)2 − q(j3+

r
2
+1)2

)

= qj2(j2+1)+j3(j3+1)q
r2

2
+r+1

×
(
q−(r+1)(j2+j3+1) + q(r+1)(j2+j3+1)

−q(r+1)(j2−j3) − q−(r+1)(j2−j3)
)
. (B.3)

B.2 Casimir decomposition of ZFF

B

In section 3.3 we obtained closed formulas (3.25) and (3.27) for the Casimir decomposition

of the partition function ZFF
B . Since our expression for the branching functions is a bit

complicated, let us reproduce the first few terms of the partition function explicitly,

ZFF
B;S=1(q) = q0χ[0,0,0] + q

1
2χ[ 1

2
,0,0] + q1χ[1,0,0] + q

3
2

(
χ[ 3

2
,0,0] + χ[ 1

2
,0,0]

)

+q2
(
χ[2,0,0] + χ[1,0,0] + χ[ 1

2
, 1
2
, 1
2
] + χ[0,0,0]

)

+q
5
2

(
χ[ 5

2
,0,0] + χ[ 3

2
,0,0] + χ[1, 1

2
, 1
2
] + 2χ[ 1

2
,0,0]

)

+q3
(
χ[3,0,0] + χ[2,0,0] + χ[ 3

2
, 1
2
, 1
2
] + 4χ[1,0,0] + χ[ 1

2
, 1
2
, 1
2
] + χ[0,0,0]

)

+q
7
2

(
χ[ 7

2
,0,0] + χ[ 5

2
,0,0] + χ[2, 1

2
, 1
2
] + 3χ[ 3

2
,0,0] + 2χ[1, 1

2
, 1
2
] + 3χ[ 1

2
,0,0]

)

+q4
(
χ[4,0,0] + χ[3,0,0] + χ[ 5

2
, 1
2
, 1
2
] + 3χ[2,0,0] + 2χ[ 3

2
, 1
2
, 1
2
] + χ[1,1,0] + χ[1,0,1]

+6χ[1,0,0] + 4χ[ 1
2
, 1
2
, 1
2
] + 3χ[0,0,0]

)

+q
9
2

(
χ[ 9

2
,0,0] + χ[ 7

2
,0,0] + χ[3, 1

2
, 1
2
] + 3χ[ 5

2
,0,0] + 2χ[2, 1

2
, 1
2
] + χ[ 3

2
,1,0]

+χ[ 3
2
,0,1] + 5χ[ 3

2
,0,0] + 4χ[1, 1

2
, 1
2
] + χ[ 1

2
,1,1] + 7χ[ 1

2
,0,0]

)

+q5
(
χ[5,0,0] + χ[4,0,0] + χ[ 7

2
, 1
2
, 1
2
] + 3χ[3,0,0] + 2χ[ 5

2
, 1
2
, 1
2
] + χ[2,1,0] + χ[2,0,1]
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+5χ[2,0,0] + 5χ[ 3
2
, 1
2
, 1
2
] + χ[1,1,1] + χ[1,1,0] + χ[1,0,1] + 14χ[1,0,0] + 5χ[ 1

2
, 1
2
, 1
2
] + 3χ[0,0,0]

)

+q
11
2

(
χ[ 11

2
,0,0] + χ[ 9

2
,0,0] + χ[4, 1

2
, 1
2
] + 3χ[ 7

2
,0,0] + 2χ[3, 1

2
, 1
2
] + χ[ 5

2
,1,0]

+χ[ 5
2
,0,1] + 5χ[ 5

2
,0,0] + 5χ[2, 1

2
, 1
2
] + 10χ[ 3

2
,0,0] + 2χ[ 3

2
,1,0] + 2χ[ 3

2
,0,1] + χ[ 3

2
,1,1]

+8χ[1, 1
2
, 1
2
] + χ[ 1

2
,1,1] + 11χ[ 1

2
,0,0]

)

+q6
(
χ[6,0,0] + χ[5,0,0] + χ[ 9

2
, 1
2
, 1
2
] + 3χ[4,0,0] + 2χ[ 7

2
, 1
2
, 1
2
] + χ[3,1,0]

+χ[3,0,1] + 5χ[3,0,0] + 5χ[ 5
2
, 1
2
, 1
2
] + 11χ[2,0,0] + 2χ[2,1,0] + 2χ[2,0,1] + χ[2,1,1]

+11χ[ 3
2
, 1
2
, 1
2
] + 2χ[1,1,1] + 4χ[1,1,0] + 4χ[1,0,1] + 22χ[1,0,0] + 13χ[ 1

2
, 1
2
, 1
2
] + 9χ[0,0,0]

)

+q
13
2

(
χ[ 13

2
,0,0] + χ[ 11

2
,0,0] + χ[5, 1

2
, 1
2
] + 3χ[ 9

2
,0,0] + 2χ[4, 1

2
, 1
2
] + χ[ 7

2
,1,0]

+χ[ 7
2
,0,1] + 5χ[ 7

2
,0,0] + 5χ[3, 1

2
, 1
2
] + 11χ[ 5

2
,0,0] + 2χ[ 5

2
,1,0] + 2χ[ 5

2
,0,1] + χ[ 5

2
,1,1]

+11χ[2, 1
2
, 1
2
] + 2χ[ 3

2
,1,1] + 5χ[ 3

2
,1,0] + 5χ[ 3

2
,0,1] + 16χ[ 3

2
,0,0] + 15χ[1, 1

2
, 1
2
] + χ[1, 3

2
, 1
2
]

+χ[1, 1
2
, 3
2
] + 4χ[ 1

2
,1,1] + 21χ[ 1

2
,0,0]

)
+ . . . .

One may deform this expression to values R 6= 1 by means of the formula (3.36) at the end

of section 3.4.

C. Recombination of the bosonic characters

Let Z be a partition function with osp(4|2) symmetry. If we denote the characters of the

bosonic subalgebra by χB
(j1,j2,j3)

(zi) = χj1(z1)χj2(z2)χj3(z3), we can write the partition

function as

Z =
∑

λ∈J

χB
λ (z1, z2, z3)ψ

B
λ (q) =

∑

λ∈J ′

χK
λ (z1, z2, z3)ψ

K
λ (q) (C.1)

where J ′ ⊂ J is the set of labels in J = {(j1, j2, j3); ji = 0, 1/2, 1, 3/2, . . . } that are

compatible with the consistency conditions (A.1). Here, the first decomposition is in terms

of bosonic characters while the second one is based on the characters of Kac modules. In

order to find the relations between these two decompositions, we recall that the roots of

the four fermionic lowering operators in g−1 := osp(4|2)−1 are

α1 =

(
−1

2
,
1

2
,
1

2

)
α2 =

(
−1

2
,
1

2
,−1

2

)
α3 =

(
−1

2
,−1

2
,
1

2

)
α4 =

(
−1

2
,−1

2
,−1

2

)
. (C.2)

Let us first discuss the generic label λ = (j1, j2, j3) where either j1 ≥ 3
2 , or j1 = 1 and

(j2, j3) 6= (0, 0). In such cases we can write the decomposition of the Kac module character

χK
λ as

χK
λ =

4∑

i=0

∑

β∈Λi(g−1)

χB
λ+β (C.3)

where β is any of the weights that appear in the ith exterior product Λi(g−1) of g−1. We

also allow for negative spins using the formal prescription χj = −χ−j−1. To treat the
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remaining cases with j1 ≤ 1
2 we employ the formulas developed in appendix A. Inserting

the decomposition of Kac modules into the partition function Z leads to a formula that

expresses the bosonic branching functions ψB
λ as sums of the branching functions ψK

µ . Our

main aim is to invert this relation, i.e. to determine the branching functions ψK in terms of

ψB . To this end let us state a few basic properties of ψK that will be checked afterwards,

once we have an explicit formula,

ψK
[j1,j2,j3]

= −ψK
[j1,−j2−1,j3]

= −ψK
[j1,j2,−j3−1] . (C.4)

If we take this behavior of ψK for granted the decomposition formulas for the partition

function Z and of χK in terms of bosonic characters imply,

ψB
λ =

4∑

i=0

∑

β∈Λi(g−1)

ψK
λ−β (C.5)

for all λ ∈ J ′. Inverting this expression leads to the following result

ψK
λ =

∞∑

n=0

(−1)n
∑

β∈Symn(g−1)

ψB
λ−β . (C.6)

To establish formula (C.6) we plug (C.5) into (C.6). Thereby we obtain

ψK
λ =

∞∑

i=0

(−1)i
4∑

j=0

(−1)j
∑

β∈Symi−j(g−1)

∑

γ∈Λj(g−1)

ψK
λ−β−γ

︸ ︷︷ ︸
=0 if i6=0

= ψK
λ , (C.7)

thus showing that (C.6) inverts (C.5). In (C.7) we have set Symn(V ) = ∅ if n < 0 and

used the identity:
4∑

j=0

(−1)j
∑

β∈Symi−j(V )

∑

γ∈Λj(V )

c(β + γ) = 0 , (C.8)

which is true for every four dimensional vector space V and every function c as long as

i ≥ 1. To show (C.8), we introduce the symbol ⊖ which is to be understood as a sort of

a negative of a direct sum as for example in A ⊕ B ⊖ B = A. Then (C.8) is equivalent

to
⊕4

j=0 ⊖jSymi−j(V ) ⊗ Λj(V ) = 0 if i ≥ 1, which can be shown using standard Young

tableaux techniques. Denote a tableau consisting of one single row with m boxes by 1m

and a tableau with one single column of n boxes10 by n1 and compute that 1m ⊗ n1 =

1mn1 ⊕ 1m−1(n+ 1)1 if m ≥ 1, n ≥ 1, n ≤ 4. Thus

4⊕

j=0

⊖jSymi−j(V ) ⊗ Λj(V ) =

4⊕

j=0

⊖j1i−j ⊗ j1

= 1i ⊕
3⊕

j=1

⊖j
[
1i−jj1 ⊕ 1i−(j+1)(j + 1)i

]
⊕ 1i−4 ⊗ 41

= 0 (C.9)

10Since we work with a four-dimensional space V , 41 = 01 must denote the trivial one-dimensional space.
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if i ≥ 1. Thereby we have established that our assumption (C.4) implies the result (C.6).

In order to complete our proof of equation (C.6) we still need to verify our assump-

tion (C.4). Let us observe that the bosonic branching functions ψB possess the same

symmetry property, because, since the bosonic characters χB are simply products of sl(2)

characters χj = −χ−j−1, the identity (C.4) holds trivially for ψB instead of ψK . We can

use this fact to show

ψK
ωm(λ) =

∞∑

i=0

(−1)i
∑

β∈Symi(g−1)

ψB
ωm(λ)−β

=

∞∑

i=0

(−1)i
∑

β∈Symi(g−1)

ψB
ωm(λ−ω̃m(β))

= −
∞∑

i=0

(−1)i
∑

β∈Symi(g−1)

ψB
λ−ω̃m(β)

= −
∞∑

i=0

(−1)i
∑

β∈Symi(g−1)

ψB
λ−β . (C.10)

The labels ω2(λ) and ω̃2(λ) were introduced as ω2(λ) = (j1,−j2 − 1, j3) and ω̃2(λ) =

(j1,−j2, j3) for all λ = (j1, j2, j3). Similar conventions apply to ω3 and ω̃3.

As we have noted before, the functions ψK
Λ can have Laurent expansions with negative

coefficients. Such negative coefficients only appear in the atypical sector and they can be

traced back to the fact that we expanded the partition function Z in terms of ‘unphysical’

characters of Kac modules rather than through those of irreducible representations. The

relation between Kac modules and irreducible representation has direct implications on the

corresponding branching functions. In fact, the branching functions ψλ that are defined

through a decomposition into characters of irreducible representations are related to the

branching functions ψK by ψ[j1,j2,j3](q) =
∑

Λ ψ
K
Λ (q). On the right hand side the summa-

tion extends over all those Kac modules KΛ that contain the irreducible representation

[j1, j2, j3] in their decomposition series. All relevant decomposition series were spelled out

in eq. (A.6). This gives

ψλ0,0(q) = ψK
λ0,0

(q) + ψK
λ0,2

(q)

ψλ0,l
(q) = ψK

λ0,l
(q) + ψK

λ0,l+1
(q) ∀ l ≥ 1

ψλk,0
(q) = ψK

λk,0
(q) + ψK

λk,1
(q) + ψK

λk,−1
(q) ∀ k ≥ 1

ψλk,l
(q) = ψK

λk,l
(q) + ψK

λk,l+1
(q) ∀ k ≥ 1 , l ≥ 1

ψλk,l
(q) = ψK

λk,l
(q) + ψK

λk,l−1
(q) ∀ k ≥ 1 , l ≤ −1 . (C.11)

Let us stress that the branching functions ψΛ(q) for irreducible representations of osp(4|2)
are guaranteed to have non-negative integral coefficients.

D. A free field construction for ôsp(M|2N)1

This appendix contains a free field construction of the affine osp(M|2N) algebra at level
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k = 1 in terms of free fermions and several bosonic ghost systems. Let us decompose all

supermatrices X ∈ osp(M |2N) into blocks according to

X =




E T̄ T
−T t F G
T̄ t Ḡ −F t


 (D.1)

where E is antisymmetric and G, Ḡ are symmetric. A basis for the various blocks in the

supermatrix X is provided by

Eij = eij − eji 1 ≤ i < j ≤ M

Fab = eab 1 ≤ a , b ≤ N

Gab = Ḡab = eab + eba 1 ≤ a ≤ b ≤ N

Tia = T̄ia = eia 1 ≤ i ≤ M , 1 ≤ a ≤ N (D.2)

where emn are elementary matrices. The matrices we have just introduced describe the

various blocks in the supermatrix X. We agree to denote by Eij the supermatrix of

the form (D.1) where E is given by Eij and all other blocks vanish. The basis elements

Fab, Gab, Ḡab, Tia, T̄ia are defined similarly.

Now let us introduce M free fermions ψi and 2N bosons βa, γa with the following basic

operator products,

ψi(z)ψj(w) ∼ δij
z − w

, βa(z)γb(w) ∼ −γa(z)βb(w) ∼ δab

z − w
. (D.3)

We can define the free field representation of the osp(M|2N) current algebra through

Eij(z) = (ψiψj)(z) , Fab(z) = −(βaγb)(z)

Gab(z) = (βaβb)(z) , Ḡab(z) = −(γaγb)(z)

Tia(z) = i(ψiβa)(z) , T̄ia(z) = −i(ψiγa)(z) .

The invariant bilinear form for osp(M|2N) is (X,Y ) = 1
2str(XY ). On the basis elements it

takes the following from

(Eij , Ekl) = −δikδjl i < j and k < l

(Fab, Fcd) = −δadδbc

(Gab, Ḡcd) = −δacδbd for a 6= b and c 6= d (Gaa, Ḡbb) = −2δab

(Tia, T̄jb) = δijδab . (D.4)

With the help of this form and assuming that M 6= 2N + 1, the holomorphic part of the
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energy momentum tensor is given by the Sugawara construction

T (z) =
(JµJµ)(z)

2(k + g∨)
=

1

2(k + g∨)

[
−

M∑

i<j=1

(E2
ij) −

N∑

a,b=1

(FabFba) −
N∑

a<b=1

( {
Gab, Ḡab

} )

−1

2

N∑

a=1

( {
Gaa, Ḡaa

} )
−

M∑

i=1

N∑

a=1

( [
Tia, T̄ia

] )]

= −1

2

M∑

i=1

(ψi∂ψi) +
1

2

N∑

a=1

(
(βa∂γa) − (γa∂βa)

)
(D.5)

Here, the dual Coxeter number is given by g∨ = M − 2N − 2 and the value of the level is

k = 1. The central charge of the system is easily seen to take the value c = M
2 −N .

Let us now introduce the involutive automorphism Ω such that the fixed point set

{X ∈ osp(M |2N)|Ω(X) = X} is isomorphic to osp(M−1|2N). On the basis we introduced

above, Ω acts non-trivially only on Eij, Tia, T̄ia. In fact, it multiplies all operators with

i = 1 by −1 and leaves the others invariant. If we denote the anti-holomorphic fields

corresponding to ψi, βa, γa by ψ̄i, β̄a, γ̄a, the deformation operator JµΩ(J̄µ) can then be

written as

JµΩ(J̄µ) = −
M∑

i<j=1

̟i(ψiψj)(ψ̄iψ̄j) −
N∑

a,b=1

(βaγb)(β̄bγ̄a)

+
N∑

a<b=1

[
(βaβb)(γ̄aγ̄b) + (γaγb)(β̄aβ̄b)

]
+

1

2

N∑

a=1

[
(βaβa)(γ̄aγ̄a) + (γaγa)(β̄aβ̄a)

]

−
M∑

i=1

N∑

a=1

̟i

[
(ψiβa)(ψ̄iγ̄a) − (ψiγa)(ψ̄iβ̄a)

]

=
1

2

[
M∑

i=1

̟iψiψ̄i +
N∑

a=1

(
γaβ̄a − βaγ̄a

)
]2

(D.6)

where ̟ = (−1, 1, . . . , 1). In order for the last line of (D.6) to make sense, we need to first

expand the square and then bring all the fields in the standard normal ordering.
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